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Feature selection is an important preprocessing step in machine learning and data mining.

In real-world applications, costs, includingmoney, time and other resources, are required to

acquire the features. In some cases, there is a test cost constraint due to limited resources.

We shall deliberately select an informative and cheap feature subset for classification. This

paper proposes the feature selection with test cost constraint problem for this issue. The

new problem has a simple form while described as a constraint satisfaction problem (CSP).

Backtracking is a general algorithm for CSP, and it is efficient in solving the new problem

on medium-sized data. As the backtracking algorithm is not scalable to large datasets, a

heuristic algorithm is alsodeveloped. Experimental results showthat theheuristic algorithm

can find the optimal solution inmost cases.We also redefine some existing feature selection

problems in rough sets, especially in decision-theoretic rough sets, from the viewpoint of

CSP. These new definitions provide insight to some new research directions.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Many data mining approaches employ feature selection techniques to speed up learning and to improve model quality

[19,27,81]. These techniques are especially important for datasets with tens or hundreds of thousands of features [14,33].

Attribute reduction [51] is a special type of feature selection problems studied by the rough set society. A reduct is a feature

subset that is jointly sufficient and individually necessary to preserve certain information of the data [72]. For decision

making, the most often addressed information is the positive region with respect to the decision class [51]. The objective of

the classical reductproblem is tofindaminimal reduct [56], since simpler representationoftenprovidesbetter generalization

ability according to Occam’s razor principle. Other feature selection problems aim at finding feature subsets with maximal

margin [6], maximal stability [3], minimal space [40], maximum relevance-maximum significance [37], best overall quality

of the potential set of rules [68], etc.

Most of these problems assume the data are already stored in datasets and available without charge. However, data are

not free in real-world applications. There are test costs, such as money, time, or other resources [41,62] to obtain feature

values of objects. For example, it takes both time andmoney to obtainmedical data of a patient [78]. Under this context, one

would like to select the cheapest reduct [60]. This consideration and the parallel test assumption havemotivated theminimal

test cost reduct (MTR) problem [41]. Recently, a number of algorithms have been developed to deal with this problem (see,

e.g., [16,41,50]). Other related issues have also been identified in addressing numerical features [79], observational errors

[47], and test costs relationships [17,42]. All these problems aim at searching the cheapest feature subset which preserves

sufficient information for classification.

Nevertheless, the available resource is usually limited, and users have to sacrifice necessary information to keep the test

cost under budget. We have introduced the feature selection with test cost constraint (FSTC) problem [46] to formulate this
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issue. The upper bound of the available resource serves as the constraint. The FSTC problem is more general than MTR [41].

In fact, these two problems coincide when the constraint is no less than the test cost of the optimal reduct. If the constraint

is so tight that the sufficiency condition cannot be met, then one cannot obtain a reduct. This is why the new problem falls

in feature selection instead of in attribute reduction.

In this paper, the FSTC problem is redefined from the viewpoint of the constraint satisfaction problem (CSP). Specifically,

it is defined with four aspects, namely input, output, constraint, and optimization objective. The new definition is simpler

and easier to comprehend than the one defined from the viewpoint of set family [46]. Furthermore, we redefine the clas-

sical reduct problem and the minimal reduct problem [56] from the CSP viewpoint. We show that most feature selection

problems in rough sets, including those of decision-theoretic rough sets (DTRS) [34,54,67,71–73,76] and game-theoretic

rough set model (GTRS) [1,2,18], can be viewed as extensions of the minimal reduct problem [56] from one or more of

these four aspects. This viewpoint gives insight to meaningful research trends concerning feature selection in a broader

sense.

There are some closely related works to this one concerning the viewpoint of the reduct problem. Yu et al. [77] defined

the problem explicitly as a CSP with the form of variables, functions and constraints. Jensen et al. [24] reformulated the

problem in a propositional satisfiability (SAT) framework, and analyzed its relationship with CSP. Jia et al. [25,26] presented

an optimization viewpoint of the problem on DTRS. Compared with them, this work is more systematic.

We develop a backtracking algorithm to the FSTC problem for small andmedium-sized datasets. Backtracking algorithms

are natural and effective approaches to CSPs for obtaining one or all optimal solutions. However, they are seldom employed

to deal with feature selection problems in rough set theory (see, e.g., [5,47]), where discernibility matrix based approaches

are more popular (see, e.g., [53,56,65,75]). One possible reason is that only a few people (see, e.g., [24,77]) have addressed

attribute reduction problems explicitly from the viewpoint of CSP. As an exhaustive algorithm, the backtracking algorithm

has a time complexity exponential with respect to the number of features.

We also develop a heuristic algorithm with polynomial time complexity for large datasets. We employ the addition–

deletion approach [73] to design a heuristic function based on information gain often employed in similar problems [8,57,

63,73]. It is similar to the one proposed in [41] to prefer low cost features through λ-weighting, where λ is a user specified

parameter. The difference between the new algorithm and the one employed in [41] lies in the stopping criteria. To improve

the performance of the algorithm, we employ the competition strategy [41]. With this strategy, different feature subsets are

obtained through setting different λ values, then the best one is selected. This strategy can trade the quality of the result

with the runtime. More importantly, with this strategy, the user is not involved in the setting of λ. Instead, a set of λ values

which are valid for any dataset are specified by the algorithm.

Five open datasets are employed to study the performance of our algorithms. Experimental results show that the back-

tracking algorithm is efficient for medium-sized data. It takes less than 0.4 s to obtain an optimal feature subset for the

mushroom dataset, which contains 22 features and 8124 objects. The backtracking algorithm is approximately 10 times

faster than SESRA [46], which is based on another definition of the problem. The heuristic algorithm is stably more efficient

than the backtracking one. With the help of the competition strategy, the heuristic algorithm can find the optimal solution

in most cases.

The rest of the paper is organized as follows: Section 2 presents the problem definition. The classical reduct problem

and the minimal test cost reduct problem are also redefined. Section 3 proposes both backtracking and heuristic algo-

rithms. Experimental results on five UCI (University of California – Irvine) datasets are discussed in Section 4. Then Sec-

tion 5 studies existing feature selection problems in the rough set society from the viewpoint of CSP. Some interesting

new problems are also briefly discussed. Finally, Section 6 presents the concluding remarks and further research direc-

tions.

2. Problem definition

This section reviews three feature selection problems in rough sets. Two of them are under the classical rough sets [51],

and the last one is concernedwith test cost [41]. These problems are redefined as CSPs.Moreover, we propose a newproblem

called feature selection with test cost constraint.

2.1. Classical feature selection problems in rough sets

Data models are fundamental for feature selection. This paper only considers decision systems.

Definition 1 [69]. A decision system (DS) S is the 5-tuple:

S = (U, C, d, V = {Va|a ∈ C ∪ {d}}, I = {Ia|a ∈ C ∪ {d}}), (1)

where U is a finite set of objects called the universe, C is the set of features, d is the decision class, Va is the set of values for

each a ∈ C ∪ {d}, and Ia : U → Va is an information function for each a ∈ C ∪ {d}.
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Let the decision system S = (U, C, d, V, I) be nominal, that is, all features in C are nominal. Any ∅ �= B ⊆ C ∪ {d}
determines an indiscernibility relation I(B) on U. A partition determined by B is denoted by U/I(B), or U/B for brevity. Let

B(X) denote the B-lower approximation of X . The positive region of {d} with respect to B ⊆ C is defined as POSB({d}) =⋃
X∈U/{d} B(X) [51,52].

Definition 2 [52]. Any B ⊆ C is called a decision relative reduct (or a reduct for short) of S iff:

1. POSB({d}) = POSC({d}); and
2. ∀a ∈ B, POSB−{a}({d}) ⊂ POSC({d}).
Definition 2 indicates that a reduct is (1) jointly sufficient and (2) individually necessary for preserving a particular

property (positive region in this context) of the decision system [31,51,72,80]. In other words, there are two constraints,

named sufficiency and necessity, respectively. Consequently, the problem of obtaining one reduct can be defined in the CSP

style as follows.

Problem 3. The attribute reduction problem.

Input: S = (U, C, d, V, I);
Output: B ⊆ C;

Constraints: (1) POSB({d}) = POSC({d});
(2) ∀a ∈ B, POSB−{a}({d}) ⊂ POSC({d}).

There may exist many reducts for a decision system. Let the set of all relative reducts of S be Red(S). Any R ∈ Red(S)
is a minimal reduct if and only if |R| is minimal. Minimal reducts are preferred because they provide the simplest repre-

sentation of the knowledge. The problem of finding a minimal reduct is called the minimal reduct problem, as defined as

follows.

Problem 4. The minimal reduct problem.

Input: S = (U, C, d, V, I);
Output: B ⊆ C;

Constraint: POSB({d}) = POSC({d});
Optimization objective: min |B|.

Problem 4 has an optimization objective, which is typical in CSP. Note that that there is only one constraint, namely

sufficiency. This does not indicate that the necessity constraint is not met. In fact, the necessity constraint can be de-

rived from the optimization objective. One can easily prove this by contradiction. That is, if there are superfluous features,

the size of the feature subset cannot be minimal. In other words, the problem definition is simplified while viewed as a

CSP.

2.2. Feature selection minimizing test cost

Test cost is an important issue in many applications. We have built a hierarchy of six test-cost-sensitive decision systems

[42]. Here we present a simple model which will be used in defining the new problem of this paper.

Definition 5 [42]. A test-cost-independent decision system (TCI-DS) S is the 6-tuple:

S = (U, C, d, {Va|a ∈ C ∪ {d}}, {Ia|a ∈ C ∪ {d}}, c), (2)

where U, C, d, {Va}, and {Ia} have the same meanings as in Definition 1, c : C → R
+ ∪ {0} is the test cost function. Test

costs are independent of one another, that is, c(B) = ∑
a∈B c(a) for any B ⊆ C.

The minimal test cost reduct (MTR) problem proposed in [41] can be redefined as follows.

Problem 6. The minimal reduct problem.

Input: S = (U, C, d, V, I, c);
Output: B ⊆ C;

Constraint: POSB({d}) = POSC({d});
Optimization objective: min c(B).

One can see there are two differences between Problem 6 and Problem 4. The first is the input, where the test cost is the

external information. The second is the optimization objective, which is to minimize the test cost, instead of the number of

features.



170 F. Min et al. / International Journal of Approximate Reasoning 55 (2014) 167–179

2.3. Feature selection with test cost constraint

Sometimes we are given limited resources to obtain the feature values. We proposed the issue of optimal sub-reduct in

[46] to address this issue. Herewe use the positive region instead of the conditional information entropy to define respective

concepts.

Definition 7. Let S = (U, C, d, V, I, c) be a TCI-DS andm the test cost upper bound. The set of all feature subsets subject to

the constraint is

T(S,m) = {B ⊆ C|c(B) ≤ m}. (3)

In T(S,m), the set of all feature subsets with the maximal positive region is

MT (S,m) = {B ∈ T(S,m)||POSB({d})| = max{|POSB′({d})||B′ ∈ T(S,m)}}. (4)

InMT (S,m), the set of all optimal sub-reducts is

PMT
(S,m) = {B ∈ MT (S,m)|c(B) = min{c(B′)|B′ ∈ MT (S,m)}}. (5)

Any element in PMT
(S,m) is called an optimal sub-reduct with test cost constraint, or an optimal sub-reduct for brevity.

In Definition 7, Eq. (3) ensures the constraint is met; Eq. (4) ensures most informative feature subset is selected; and

Eq. (5) ensures test cost is minimized. The problem of constructing PMT
(S,m) is called the optimal sub-reducts with test cost

constraint (OSRT) problem [46]. Unfortunately, the definition is rather prolonged and hard to read. Next we follow the style

of Problem 4 to present the following problem.

Problem 8. The feature selection with test cost constraint (FSTC) problem.

Input: S = (U, C, d, V, I, c), the test cost upper bound m;

Output: B ⊆ C;

Constraint: c(B) ≤ m;

Optimization objectives: (1) max |POSB({d})|; and (2) min c(B).

Note that the two objectives are not equally important. They are the primary and the secondary objectives, respectively.

In fact, Problem 8 is the same as the OSRT problem. However the problem definition is simpler and easier to comprehend.

This phenomenon indicates that the form of CSP is more appropriate for this kind of problems.

By comparing Problems 6 and 8, we observe the following differences. First, the constraint is expressed by the test cost

instead of the positive region. Second, the first objective of Problem 8 is to maximize the positive region. Third, the objective

of Problem 6 becomes the secondary objective of Problem 8. This objective is considered after the primary one is achieved.

In fact, Problem 8 is more general than Problem 6. Let B′ be a minimal test cost reduct subject to Problem 6. Ifm ≥ c(B′),
the constraint is met when the primary objective is achieved. In other words, the constraint is essentially redundant. The

first objective will be replaced by POSB({d}) = POSC({d}), which serves as a constraint. The second objective is then the

only objective. Consequently, Problem 8 coincides with Problem 6 in this case.

3. Algorithm design

This section presents two algorithms. One is a backtracking algorithm, and the other is a heuristic algorithm. The back-

tracking algorithm always produces an optimal solution to the problem. The heuristic algorithm is more efficient to large

datasets, however the feature subset obtained may not be optimal.

3.1. The backtracking algorithm

The backtracking algorithm is a natural solution to CSP. In the rough set society, people seldom employ this algorithm for

attribute reduction. This is partly due to the form of problem definition as shown in Definition 2. The backtracking algorithm

to the FSTC problem is illustrated in Algorithm 1. To invoke the algorithm, one should initialize the global variables m, let

B = ∅, and use the following statement:

backtracking(∅, 0);
then at the end of the algorithm execution, an optimal feature subset will be stored in B.

In Algorithm 1, Lines 3 through 5 check the constraint. Feature subsets violating the constraint are simply discarded.

Lines 6 through 8 indicate if the positive region of the current feature subset is the same as C, namely the sufficiency

condition can be met, the FSTC problem coincides with the MTR problem. In this case we only need to address the MTR

problem. Lines 9 through 11 are devoted to the optimization objective. |POSB′′({d})| > |POSB({d})| serves for the first

objective. c(B′′) < c(B) serves for the second; it is checked only if POSB′′({d}) = POSB({d}). In our implementation in Coser

[48], the algorithm is implemented to avoid repeated computation of positive regions.
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Algorithm 1. The backtracking algorithm to the FSTC problem

Input: Selected feature subset B′, feature index lower bound l

Output: Results are stored in the global variable B

Method: backtracking

1: for (i = l; i < |C|; i ++) do
2: B′′ = B′ ∪ {ai};//One more feature

3: if (c(B′′) > m) then

4: continue;//The constraint is violated

5: end if

6: if (POSB′′({d}) = POSC({d})) then
7: throw new Exception(“Coincides with the MTR problem");

8: end if

9: if (|POSB′′({d})| > |POSB({d})| ∨ (POSB′′({d}) = POSB({d})) ∧ (c(B′′) < c(B))) then
10: B = B′′;//A better feature subset

11: end if

12: backtracking(B′′, i + 1);//Backtracking

13: end for

Table 1

A decision table for Example 9.

U a1 a2 a3 d

x1 Y Y Y A

x2 N Y N B

x3 Y N N B

x4 N N Y A

x5 Y Y Y B

Note that a feature is never removed from a subset. This is important to ensure the correctness of the algorithm. Line 2

shows that feature ai is added. It may happens that POSB′′({d}) = POSB′′∪{ai}({d}), i.e., ai does not contribute to the positive

region. However, ai is not removed because itmay be useful while combinedwith other features.We introduce the following

example to explain the reason.

Example 9. Consider the decision system listed in Table 1. Let c = [2, 3, 10] and m = 6. Because c(a3) = 10 > m, a3 is

never selected. We have POS{a1}({d}) = POS{a2}({d}) = ∅. That is, neither a1 nor a2 contributes to the positive region alone.

However, POS{a1,a2}({d}) = {x2, x3, x4}, hence both a1 and a2 are useful. The optimal feature subset is {a1, a2}, which is the

output of the algorithm.

In fact, B may contain some redundant features during the algorithm execution. It will eventually replaced by another

feature subset with bigger positive region or smaller test cost in Line 10. Example 9 will be discussed further in Section 3.2.

The space complexity of Algorithm 1 is easy to analyze. The algorithm searches in a tree with depth |C| in a depth-first

manner. Whenever the backtracking method is invoked there is a need to obtain a new partition of the objects, which takes

O(|U| × |C|) space. Hence the space complexity is

O(|C| × |U| × |C|) = O(|U| × |C|2). (6)

Nowwe analyze the time complexity. The number of feature subsets is 2|C|. In the worst case all of them are checked. On

the other hand, a feature subset is never checked twice. Therefore the number of backtracking steps, namely the number of

time the backtrackingmethod is invoked, is bounded by 2|C|. As indicated by Line 1, each timewe need to compute a feature

subset with one more feature. In this way, the computation involves splitting the dataset according to the current feature.

Respective operation takes O(|U| × |Vai |) of time. Let vmax = maxa∈C |Va|. The time complexity is

O(|U| × 2|C| × vmax). (7)

Unfortunately, the average time complexity is hard to analyze.Wewill show by experimentation that it is significantly lower

than the worst case.

The design of the algorithm is often closely related to the problem definition. Algorithm 1 can be easily obtained from

Problem 8. Similarly, the SESRA algorithm [46] has three main steps, as indicated by Definition 7. This phenomenon shows

further the influence of the problem viewpoint to the problem definition and the algorithm design.

3.2. The heuristic algorithm

The backtracking algorithm is not scalable. As indicated by Eq. (7), the runtime can be exponential with respect to the

number of features in the worst case. Hence we need to design heuristic algorithms for large datasets. We adopt the well



172 F. Min et al. / International Journal of Approximate Reasoning 55 (2014) 167–179

known addition–deletion approach [42,73] to design our algorithm, since the deletion approach is inefficient for large

datasets [73].

The positive region seems to be a natural heuristic information, however, it may not work on some datasets. Let B be the

currently selected feature subset. We would like to select ai ∈ C − B if it is informative (i.e., |POSB∪{ai} − POSB| is big) and
cheap (i.e., c(ai) is small). Unfortunately, we have counterexamples to this approach. Let us consider Example 9 again. At the

very beginning B = ∅. Since POSB∪{a1} = ∅, a1 has no contribution to the positive region and therefore cannot be selected.

For the same reason a2 is not selected. a3 cannot be selected due to the test cost constraint. Finally, this approach fails to

construct the optimal feature subset {a1, a2}. Such cases happen in applications frequently. We have tested this approach

on the datasets listed in 2. In the Voting and Tic-tac-toe datasets [4], no feature alone produces positive region, therefore

the approach fails given any test cost setting.

A feasible heuristic information is the information gain [55,64]. Generally, a feature subset with less information entropy

tends to produce bigger positive region. Therefore we employ information gain in this paper to design our algorithm. Let

H(Q |P) be the conditional information entropy of Q w.r.t. P [64]. Let further B ⊂ C and ai ∈ C − B, the information gain of

ai w.r.t. B is

fe(B, ai) = H({d}|B) − H({d}|B ∪ {ai}). (8)

It is proven that |POSB∪{ai} − POSB| > 0 gives H({d}|B)−H({d}|B∪{ai}) > 0. But the reverse does not hold. In other words,

information entropy is more sensitive to feature than positive region.

To select the current best feature, both information gain [64] and test cost are taken into consideration. We use the same

approach as that in [41] to select the current best test. And the λ-weighted function is defined as

f (B, ai, c) = fe(B, ai)c
λ
i , (9)

whereλ is a non-positive number.With the introduction ofλ, cheaper features are preferred. Ifλ = 0, f (B, ai, c) = fe(B, ai),
and the heuristic information coincides with the information gain.

Algorithm 2. The λ-weighted heuristic algorithm

Input: S = (U, C,D, V, I, c), m
Output: B ⊆ C

Method: λ-weighted-fstc

1: B = ∅; //initialize the output

2: CA = C; //unprocessed features

3: cl = m; //available test cost

//Compute a feature subset with the least information entropy

4: while (CA �= ∅) do
5: For any a ∈ CA satisfying C(a) ≤ cl , compute f (B, a, c);

//Addition

6: Select a′ ∈ CA with the maximal f (B, a′, c);
7: B = B ∪ {a′}; CA = CA − {a′}; cl = cl − c(a′);

//Deletion, remove redundant features from the viewpoint of information entropy

8: for (each a ∈ B) do

9: if (H({d}|B − {a}) = H({d}|B)) then
10: B = B − {a′}; //a′ is redundant
11: cl = cl + c(a′); //restore the constraint

12: end if

13: end for

//Remove features not satisfying the constraint to speed up

14: for (each a ∈ CA) do

15: if (ca > cl) then

16: CA = CA − {a};
17: end if

18: end for

19: end while

//Remove redundant features from the viewpoint of positive region

20: for (each a ∈ B) do

21: if (POSB−{a′}({d}) = POSB({d})) then
22: B = B − {a′}; //a′ is redundant
23: end if

24: end for

25: return B;
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Table 2

Dataset information.

Name Domain |C| |U| d

Zoo Zoology 16 101 Type

Voting Society 16 435 Vote

Tic-tac-toe Game 9 958 Class

Mushroom Botany 22 8124 Class

Connect-4 Game 42 67,557 Class

Our algorithm is listed in Algorithm 2. The algorithm first constructs a feature subset meeting the constraint and with

minimal information entropy in Lines 4 through 19. Lines 14 through 18 are not necessary, however they help speeding up

the algorithm. Then redundant features are removed from the viewpoint of the positive region in Lines 20 through 24.

Onemay find that the algorithm is successful on Example 9. If we remove x5 from the dataset, this algorithm also fails. To

make thematterworse, the ID3 decision tree encounters the sameproblem. Thismight be a drawback of heuristic algorithms

compared with exhaustive ones. Fortunately, this extreme case seldom happens in applications. On many UCI datasets we

tested, Algorithm 2 never fails to construct a feature subset.

The space complexity of Algorithm 2 is decided by the size of the decision system. It is

O(|U| × |C|). (10)

Now we analyze the time complexity. In the worst case, the while loop indicated by Line 4 would execute |C| times, and

each time all remaining features are checked in Line 5. Line 5 is executed at most
∑|C|−1

i=0 (|C| − i) = O(|C|2) times. Since

f (B, a, c) is based on the positive region, similar to the analysis in Section 3.1, the time complexity is

O(|U| × |C|2 × vmax). (11)

In applications, it is hard for the user or even the expert to set a rational λ. To make the matter worse, the best λ does not

always produce the best result. We can adopt the competition strategy working as follows. First, it specifies a set of λ values,

then it obtains corresponding feature subsets using Algorithm 2, finally it chooses the feature subset with the maximal

positive region and the minimal test cost. Since feature subsets produced by different λ values compete against each other

with only one winner, this strategy is called the competition strategy [41].

Formally, let Bλ be the feature subset constructed by Algorithm2using the exponentialλ.With� the set of user-specified

λ values,

POS� = max
λ∈�

POSBλ({d}) (12)

is the maximal positive region that can be obtained with the competition strategy. This process requires the algorithm to be

run |�| times and the time complexity would be O(|�| × |U| × |C|2 × vmax) instead. It is acceptable for relatively small

|�|. We will show that setting � is easy in Section 4.3.

4. Experiments

The main purpose of our experiments is to answer the following questions.

1. Is the backtracking algorithm efficient?

2. Is the heuristic algorithm effective?

3. Is there an optimal setting of λ for any dataset?

4. Is the extra computation time consumed by the competition strategy worthwhile?

4.1. Datasets

We deliberately select five datasets from the UCI Repository of Machine Learning Databases [4]. Their basic information

is listed in Table 2, where |C| is the number of features, |U| is the number of instances, and d is the name of the decision.

There are a number of notes tomake.While counting the number of features, the decision is not included. Missing values

(e.g., those appearing in the Voting dataset) are treated as one particular value. That is, ? is equal to itself, and unequal to

any other value. The “animal name" feature is not useful in the Zoo dataset, and we simply remove it.

Most datasets from the UCI library [4] do not provide test cost information. For statistical purposes, we need to produce

them. Different test cost distributions correspond to different applications. Three distributions, namely uniformdistribution,

normal distribution, and Pareto distribution have been discussed in [41]. For simplicity, this paper only employs the uniform

distribution to generate random test cost in [1 . . . 100]. According to Definition 5, two TCI-DS are different once their test

cost settings are different. In this sense, we can produce as many TCI-DS as needed from a given DS.
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Table 3

Backtracking steps on four datasets (with 100 test cost settings).

Dataset |C| 2|C| |B| Backtracking steps

Min Max Aver. Min Max Aver.

Zoo 16 65,536 4 6 4.74 132 4089 1112

Voting 16 65,536 7 9 8.23 8139 46,421 24,354

Tic-tac-toe 9 512 6 7 6.70 271 439 386

Mushroom 22 4,194,304 3 6 4.31 26 4899 725

Table 4

Runtime (ms) on four datasets (mean values for 100 test cost settings).

Dataset SESRA SESRA∗ Backtracking Heuristic

Zoo 50 48 7 2

Voting 5334 2498 485 18

Tic-tac-toe 167 39 28 26

Mushroom 3661 857 367 180
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Fig. 1. The runtime of the heuristic algorithm on the Connect-4 dataset.

4.2. Efficiency of the algorithms

We need to know the efficiency of the backtracking algorithm from three viewpoints. The first is the average time

complexity. We need to know whether or not the number of backtracking steps is exponential with respect to the number

of features. The second is the time taken for small or medium-sized data. In fact, diagnosis data for one particular disease

in a hospital may contain only a few thousands of instances. For those datasets, an optimal solution is always required. The

third is the runtime compared with other exhaustive approaches. The backtracking algorithm is compared with SESRA and

SESRA∗ proposed in [46]. SESRA is based on Definition 7, and SESRA∗ is an enhanced version.

Table 3 shows the number of backtracking steps, namely how many times the backtracking method is invoked. Let BS

denote this number. 2|C| is the size of the backtracking tree, hence it is also the upper bound of BS. For the Voting dataset,

|C| = 16 and sometimes |B| = 9. Therefore the maximal BS can be 46,421, which is close to 2|C| = 65,536. This indicates

that sometimes BS can be exponential with respect to |C|. In contrast, For the Mushroom dataset, |C| = 22 and sometimes

|B| = 6. The maximal BS is only 4899, which is significantly smaller than 2|C| = 4,194,304. In one word, BS is relevant to not

only |C|, but also |B|.
Table 4 compares the performance of the backtracking algorithm with SESRA and SESRA∗ [46] in terms of the runtime.

The backtracking algorithm only takes 367 ms and 485 ms on the Mushroom and Voting datasets, respectively. In other

words, it is appropriate for many real applications. Moreover, the backtracking algorithm stably outperforms SESRA and

SESRA∗. Only about 1/10 time is taken on the Tic-tac-toe andMushroom datasets compared with SESRA. These results show

further the advantage of the CSP viewpoint.

For convenience, the runtime of the heuristic algorithm is also listed in Table 4. The heuristic algorithm is always more

efficient than exhaustive algorithms. The efficiency difference becomes significant when the runtime of exhaustive algo-

rithms is long. Moreover, the efficiency depends more on the dataset size instead of |B|. To sum up, the heuristic algorithm

can deal with larger datasets compared with exhaustive algorithms.

For the Connect-4 dataset, only the heuristic algorithm is tested. This is because that all our exhaustive algorithms fail

on this dataset. We randomly sample the dataset to produce subtables with different number of objects. Then the heuristic

algorithm is run on each subtable. The runtime is shown in Fig. 1. Here we observe that the runtime of the algorithm is

proportional to the number of objects. In other words, the heuristic algorithm is scalable.
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Fig. 2. The probability of finding the optimal feature subset for given λ.
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Fig. 3. The probability of finding the optimal feature subset.

4.3. Effectiveness of the heuristic algorithm

We compare the performance of the three approaches mentioned in Section 3.2. All three are based on Algorithm 2. The

first approach, called the non-weighting approach, is implemented by setting λ = 0. The second approach, called the best

λ approach, chooses the best λ value in � = {0, −0.25, −0.5, . . . , −3}. The third approach is the competition strategy

based � as discussed in Section 3.2.

We now look at the influence of the λ setting. Fig. 2 shows the probability of finding the optimal feature subset for given

λ. Although −0.75 seems a reasonable value, there does not exist an optimal setting of λ for all datasets. In other words, λ
is hard to specify.

General results are depicted in Fig. 3, from which we observe the following. First, the approach without taking into

considering the test cost performs poorly. In most cases it cannot find the optimal feature subset. Second, if we specify λ
appropriately, namely λ = λ∗, the results are more acceptable. It is more likely to find the optimal feature subset. However,

as discussed earlier, we often have no idea how to specify it. Third, the performance of the competition strategy is much

better than the other two. In more than 70% cases it produces the optimal feature subset. Moreover, the user does not have

to know the optimal setting of λ. In one word, the extra computation resource consumed by the competition strategy is

worthwhile.
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5. The CSP viewpoint to feature selection

Problems 3, 4, 6 and 8 provide the CSP viewpoint to feature selection. Most existing feature selection problems in rough

sets canbeviewedextensionsofProblem4 inoneormoreof the followingaspects: input, output, constraint, andoptimization

objective. We analyze them from each aspect as follows.

First, there are some extensions concerning the input data model. Since the data model is essential, these extensions

often require extensions of the Pawlak rough set.

1. Some conditional features are numeric. Numeric data are quite different from symbolic ones which are employed in

Pawlak rough sets [51]. Coverings, instead of partitions, can be formed according to feature sets. Covering-based rough

sets [66,84–86] deal with reduction of coverings. The neighborhood rough setmodel [19–22] generates neighborhood

systems on such data.

2. The data are uncertain. The uncertainty of data may be caused by noise, observational error, etc. [7]. The error range

based covering rough set model [47] was proposed to deal with observational error. Another well known data model

might be interval-valued fuzzy sets [12], which has been studied through rough sets [11].

3. There are external information on features and feature subsets [74]. Some information are subjective and can be

expressed by user preference. For example, features are ranked by the user, or even directly specified by an expert

[44]. Other information are objective. For example, there is a weight or test cost for each feature [42,74]. There are a

number of possible extensions to the weight computation of an feature subset. These are additive, average, maximal,

minimal extensions [74]. In [42], six data models concerning test cost and relationships among features are defined.

Test-cost-sensitive attribute reduction problems [17,47] can be defined according on these models.

4. There are external information on classification [28]. Themostwidely adopted informationmight bemisclassification

cost [62,83]. DTRS [29,71,73] consider loss functions concerning different classifications. These classifications corre-

spond to positive, negative and boundary rules. There are cost for both misclassifications and correct classifications.

5. There are external information on both conditions and classifications. In applications such as clinic systems, both test

costs and misclassification costs exist [62]. This issue is addressed in [47].

Second, there are some extensions concerning the output. People considered generalized reduct problems, such as at-

tributevalue reduction [52], discretization [49,61], symbolic valuepartition [43]. Since featuresare transformedor combined,

these problems should be called feature extraction instead [15,23].

Third, there are some extensions concerning the constraint. Many of them are still expressed with the same form as

Problem 4. However, the definitions of the positive region are different due to the change of the input data model. Others

are expressed with different forms.

1. The computation of the positive region follows DTRS models [67,71,73]. In DTRS, parameters γ , β and δ are used to

define positive regions. They are in turn computed based on a set of loss functions according to the Bayesian decision

procedure. The major advantage is that parameters are not set by the user subjectively. Therefore the models have

good semantics and wide applications.

2. The computation of the positive region follows the variable precision rough set model [87], or the Bayesian rough

set model [58]. There is a user-specified parameter β to indicate the admissible classification error. Pawlak rough

sets can be viewed a special case of variable precision rough sets where β = 0. This extension has inspired fruitful

research works concerning probabilistic rough sets [13,35,32,70]. β-lower distribution and β-upper distribution [38]

have been more closely studied.

3. The computation of the positive region follows the neighborhood rough set model [20–22] or the error range based

covering rough set model [47]. In the neighborhood rough set model [20–22], positive regions also rely on a user

specified parameter δ, which is the distance threshold. In the error range based covering rough setmodel [47], positive

regions also rely on error ranges of data. Error ranges are determined by testing instruments and therefore they are

objective.

4. The constraint is conditional information entropy [57,63,36]. It is expressed by H(B|{d}) = H(C|{d}) where H(B|{d})
denotes the conditional information entropy of B with respect to d. The conditional information entropy constraint

is stricter than the positive region constraint. That is, the feature subset meeting the positive region constraint may

not meet the conditional information entropy constraint. While the reverse does not hold. These two constraints are

equivalent if and only if the decision system is consistent [39].

Fourth, there are some extensions concerning the optimization objective.

1. Minimize the cost. In test cost sensitive decision systems, the objective is to minimize the total test cost [41]. In

misclassification cost sensitive decision systems, the objective is to minimize the average misclassification cost [31,

71,73], the risk [30,35], or the weighted accuracy andweighted error [82]. In decision systemswith both test cost and

misclassification cost, the objective is to minimize the total cost [45].
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2. Minimize the feature space
∏

a∈B |Va|. For the minimal reduct problem, features with more values are more likely to

be selected. These features, however, have weaker generalization ability than features with fewer values. The new

objective canhelp amend this drawback.When thedomains of features have the same size, thenewobjective coincides

with Problem 4 [40].

3. Maximize the stability. Dynamic reducts [3] are stable in the process of decision table sampling. Decision rules com-

puted from dynamic reducts are more reliable. Parallel reducts [9] follow the same idea.

4. Maximize the margin. A margin is a geometric measure for evaluating the confidence of a classifier with respect to

its decision [6,10]. Unlike other metric such as positive region or conditional information entropy, this measure is not

monotonic. That is, it may increase or decrease when more features are selected.

Most problemsmentioned above are no longer reduct problems. When the input is changed, the indiscernibility relation

may not exist. One can only consider weaker relations such as the similarity relation [59]. When the constraint is changed,

the positive region is not computed, or computed not in the Pawlak approach (see, e.g., [21,47]). Reducts subject to the

conditional information entropy constraint may not be a Pawlak reduct. When the optimization objective is changed, the

optimal reduct may not be minimal. Feature subset with the minimal total cost [47] may not be a reduct at all.

From these extensions, many meaningful new problems can be identified. A few of them are listed as follows.

1. Feature selection under DTRS with test cost. Note again the external information in DTRS cannot be expressed by a

misclassification matrix. Test cost is also one kind of external information. By considering more external information,

the problem is more interesting and challenging.

2. Feature selectionwith positive region constraint. To have an even simpler representation, wemay require the positive

region to be preserved to a certain degree. For example, the feature subset should have a positive region more than

95% of the original. Note that this problem is different from the variable precision rough set model [87] where the

definition of positive region is changed. Their motivations are, however, quite similar in that they all deal with the

overfitting issue.

3. Minimal test cost feature selection with positive region constraint. This problem differs from the last one in that the

objective is to find a feature subset with least cost. It is a hybrid of the last problem and the MTR problem. It can be

also viewed a dual problem of the FSTC problem.

Some of these problems are new combinations of existing extensions, some involve new extensions. We observe that the

number of possible combinations is big, and many of them have certain application areas. In other words, much research

issues are opened from the CSP viewpoint.

6. Conclusions and further works

This paper proposed a new feature selection problem concerning the test cost constraint. The new problem has a wide

application area because the resource one can afford is often limited. Both backtracking and heuristic algorithms were

designed for it. Experimental results showed the efficiency of the backtracking algorithm compared with existing ones, and

the effectiveness the competition strategy based on the λ-weighted heuristic algorithm. It should be noted that with the

competition strategy, we do not have to know the optimal setting of λ. Instead, we can specify a set of λ values which are

valid for any dataset.

A more important contribution of the paper is the CSP viewpoint to feature selection in rough sets. From this viewpoint,

most feature selection problems are natural generalizations of the minimal reduct problem. This viewpoint helps us to

identify some other meaningful problems from the following aspects: input, output, constraint, and optimization objective.

In summary, this paper has indicated important research trends concerning feature selection beyond rough sets.
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