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Abstract
Recently, the advancement of cognitive computing and three-way decisions has enabled in-depth sequential pattern under-
standing through temporal association analysis. The main challenge is to obtain concise patterns that express richer semantics 
for multivariate time series (MTS) analysis. In this paper, we propose a tri-partition state alphabet-based sequential pattern 
(Tri-SASP) for MTSs. First, a tri-wildcard gap inserted between each pair of adjacent states enhances the flexibility of the 
method. Second, a given set of states is partitioned into positive (POS), negative (NEG) and boundary (BND) regions. The 
states in POS can only be used to construct a Tri-SASP, the states in NEG can only be matched by a tri-wildcard gap, and 
the states in BND can be used in both ways. Finally, horizontal and vertical algorithms are proposed to obtain frequent Tri-
SASPs in a breadth-first manner. The experimental results on four real-world datasets show that (1) the discovered Tri-SASPs 
and temporal rules can enrich human cognition; (2) the two tri-partition strategies can bring us very meaningful and varied 
Tri-SASPs; and (3) the two algorithms are effective and scalable.
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Introduction

Three-way decisions (3WDs) [1, 2], originating from rough 
set theory [3], have become a focus of cognitive computation 
[4, 5]. Through the idea of “thinking in threes” [6], numer-
ous novel machine learning theories such as granular com-
puting [7], concept analysis [8], fuzzy sets [9], interval sets 
[10] and cost-sensitive learning [11, 12], as well as appli-
cations such as recommendation systems [13, 14], active 
learning [15], classification [16], clustering [17], pattern dis-
covery [18], target recognition [19], attribute reduction [20] 
and email filtering [21], have been extensively studied. The 
discovery of novel associations and patterns [22] to promote 
brain-like computer cognition and decisions brings opportu-
nities and challenges for cognitive computation [23].

Figure 1 shows some existing works on frequent sequen-
tial pattern discovery initiated by Agrawal and Srikant [24]. 
Recently, this direction has attracted much attention [25, 
26]. Numerous studies of this issue focus on sequence data-
bases [27]. GSP [28] was improved from AprioriAll [24], 
and both of them were inspired by frequent itemset mining 
[29]. To avoid the drawbacks (e.g., too many candidates) 
of the horizontal GSP algorithm, Spade [30], Spam [31], 
Lapin [32] and PrefixSpam [33] were proposed on the basis 
of vertical database representation [34]. To obtain concise 
results, closed [35], maximal [36] and generator frequent 
sequential patterns [37] were designed. To extract richer pat-
terns, weighted [38], high-utility [39], uncertain [40] and 
fuzzy [41] methods were defined.

For pattern discovery on MTSs, there are along-first DTA 
[42], improved from TARD [43] and across-first STAP [44]. 
As important results of temporal association analysis [45], 
the rules generated by STAP are more explainable than those 
generated by DTA. This is because the components of DTA 
are subsequence clusters, where subsequences are similar 
but different. The components of STAP are states that are 
unambiguous at each time stamp. As the foundation of fre-
quency computing, matching conditions of patterns such 
as non-overlapping [46], one-off [47] and general [48] are 
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popular strategies. Naturally, there is still a need to enrich 
the semantics of the pattern further.

In this paper, we propose a new type called a tri-partition 
state alphabet-based sequential pattern (Tri-SASP) to enrich 
the pattern type on MTSs. A state is defined as a set of 
attribute-value pairs. For example, the set {(Temperature, 
High), (Humidity, Medium)}, also denoted as (Tempera-
ture, High) ∧ (Humidity, Medium), is a state of weather. 
Through inserting a tri-wildcard gap Δ between each pair 
of adjacent states, the flexibility can be greatly enhanced. 
Tri-SASP generalizes a tri-pattern [18], which is based on 
univariate sequences in MTSs. It generalizes STAP through 
a tri-partition state alphabet with two reasonable strategies. 
A Tri-SASP is frequent in an MTS if the occurrences of 
each state exceed a user-specified threshold � and the occur-
rences of the Tri-SASP exceed another threshold � . There-
fore, the problem is to discover all frequent Tri-SASPs from 
a given MTS and a tri-partition state alphabet Σ.

First, inspired by three-way decision theory [2], a given 
set of states can be divided into three disjoint regions, 
namely, the POS, BND and NEG ones, namely, we have 
that (1) Σ = POS ∪ BND ∪ NEG and (2) POS ∩ BND = POS 
∩ NEG = BND ∩ NEG = � . Here, we discuss two strate-
gies, called support-partition (SP) and compression-partition 
(CP). For the SP strategy, two thresholds � and � ( � ≤ � ) 
are used to obtain ΣSP . If the frequency of a state is not less 
than � , it belongs to POS. If the frequency is less than � , it 
belongs to NEG. Otherwise, it belongs to BND. In other 
words, the set of frequent states is partitioned into POS and 
BND, while the set of infrequent ones is NEG. The main 
idea of the SP strategy is to measure the state significance by 
its frequency. For the CP strategy, only � is used to generate 

ΣCP through defining frequent closed and maximal states. 
POS is the set of frequent maximal states. BND is the differ-
ence set of frequent closed states and maximal states. NEG 
is the difference set of all frequent states and closed states. 
We have ΣCP ⊆ ΣSP , and the NEG of ΣSP is not stored. The 
main idea of the CP strategy is that longer (or more special) 
states are more significant.

Second, a Tri-SASP is constructed with the given 
Σ ∈ {ΣSP,ΣCP} and tri-wildcard gap. Given the lower bound 
G and upper bound G (0 ≤ G ≤ G) , namely, the minimal 
and maximal gap constraints, the tri-wildcard gap can be 
denoted as Δ = [G,G] . The number of time stamps between 
each pair of adjacent states must be no less than G and no 
more than G . Consequently, the matching conditions can 
be defined as follows: (1) if a state comes from POS, it can 
be a component of the Tri-SASP but cannot be matched by 
the tri-wildcard gap; (2) if a state belongs to NEG, it can be 
matched by the tri-wildcard gap but cannot be a component 
of the Tri-SASP; and (3) if a state is contained in BND, it 
can either be a component of the pattern or matched by the 
tri-wildcard gap. In other words, we have (1) all components 
of a Tri-SASP must be states from POS ∪ BND; and (2) the 
states of POS never appear in these time stamps between 
each pair of adjacent states.

Third, two algorithms, horizontal and vertical algorithms, 
are proposed to obtain frequent Tri-SASPs. The general 
matching condition is introduced here because it maintains 
the complete occurrences of Tri-SASPs. With the a priori/
down-closure property, namely, that if a Tri-SASP is infre-
quent, all of its super-patterns must be infrequent, the two 
proposed algorithms are able to obtain frequent patterns 
rapidly and exactly. The horizontal algorithm computes the 

Fig. 1  Techniques of frequent sequential pattern discovery (Tri-SASP is our contribution)
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support of a Tri-SASP by re-scanning the MTS. The vertical 
algorithm obtains this support by computing the interaction 
of two TPLists belonging to two sub-patterns. The TPList 
of a Tri-SASP is a set of tuples that firmly maintain the 
occurrences and positions of the last state of the Tri-SASP.

Experiments were carried out on four real-world datasets, 
including air quality, central air-conditioning and oil elec-
tric submersible pump (ESP) sanding diagnosis and working 
diagnosis. The results show that: (1) contained in the state 
transition figure, both frequent Tri-SASPs and confident 
temporal association rules can provide new patterns and 
associations for expert decisions; (2) the SP and CP strate-
gies bring us new knowledge about which states are more 
frequent and special, respectively; (3) Tri-SASPs obtained 
with the above two tri-partition strategies are greatly differ-
ent; and (4) the horizontal and vertical algorithms are better 
for uniform and non-uniform datasets, respectively.

The contributions of this paper include the following:

• a new type of sequential pattern with a tri-partition state 
alphabet;

• two tri-partition strategies for a given state set;
• the strategy of pattern construction as well as the condi-

tion of tri-wildcard gap matching; and
• horizontal and vertical techniques for Tri-SASP support 

computing.

The rest of the paper is organized as follows: "Related 
Work" reviews previous works, including three-way decision 
and pattern discovery. "Tri-SASP and Temporal Association 
Analysis" proposes the concepts of the new Tri-SASP and 
temporal association rules. "Methods" presents the design 
of horizontal and vertical algorithms for discovering fre-
quent Tri-SASPs. "Experiments" discusses the experimental 
results on scalability, readability and diversity. Finally, con-
cluding remarks are presented in "Conclusion".

Related Work

In this section, we first review the theory and applications 
of 3WDs. Second, works regarding sequence pattern dis-
covery on univariate, multivariate and sequence databases 
are presented.

Three‑Way Decisions

In rough set theory [3], using an equivalence relation, the 
universe is partitioned into three disjoint regions. The posi-
tive, negative and boundary regions are the sets of objects 
that are definitely, definitely not and possibly members of 
the target set, respectively. However, this strict division often 
hinders its application in practice. Probabilistic rough set 

models such as decision-theoretical rough sets (DTRS) [49] 
and variable-precision rough sets [50] were introduced to 
address this issue. Among them, DTRS is a sound theory 
based on Bayesian decision making. The required param-
eters are systematically determined based on the costs of 
various decisions [2, 49].

The 3WDs have substantially advanced by becoming a 
divide-and-conquer methodology [2] rather than a concrete 
technique. One task of this methodology is to construct a 
tri-section or tri-partition of the universal set. The other task 
is to act upon objects in one or more regions by developing 
appropriate strategies. 3WDs are a class of effective methods 
and heuristics commonly used in human problem solving 
and information processing.

Recently, various theories have been inspired by the 
3WD. Three-way formal concept analysis [51] is constructed 
using the three-way operators and their inverses. Three-way 
cognition computing [5, 7] focuses on concept learning 
via multi-granularity from the viewpoint of cognition. The 
three-way fuzzy sets method [9] constructs a three-way, 
three-valued or three-region approximation with a pair of 
thresholds on the fuzzy membership function. Three-way 
decision space [52] unifies decision measurement, decision 
conditions and evaluation functions. Sequential three-way 
decisions [13] is an iteration process that eventually leads 
to two-way decisions. Some generalized three-way decision 
models [53–55] are quite popular.

Additionally, there are abundant applications. Three-way 
recommender systems have been applied in both classifica-
tion and regression [14] of user ratings. Three-way active 
learning [56] finds a tradeoff between the teacher cost of 
acquiring class labels and the misclassification cost. Three-
way clustering [17] introduces a new strategy for overlap-
ping clustering based on the DTRS model. Tri-partition 
neighborhood covering reduction [16, 57, 58] facilitates 
robust classification, and three-way spam filtering [21] 
reduces the email misclassification costs. Three-way face 
recognition [19] develops a sequential strategy to address 
the imbalanced misclassification cost and the problem of 
insufficient high-quality facial image information. Finally, 
an interesting type of pattern called a tri-pattern, which is 
based on the tri-partition alphabet, has been proposed for 
univariate time series, text and biological data analysis.

Sequence Pattern Discovery

Figure  2 shows the relationships among univariate 
sequences, multivariate sequences and sequence databases. 
For transaction data, the original association analysis prob-
lems and methods [29] were proposed to find interesting 
market patterns, for example, in beer and diaper sales at 
WalMart. For sequence databases, namely, transaction 
data with additional temporal information, the patterns in 
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the interactions of two systems at different times are sig-
nificant. For example, different customers may buy various 
commodities over a period of time. Based on this type of 
dataset, sequential patterns such as {milk, bread} → {beer, 
diapers, toothbrush} → {towel} can be discovered. Because 
each customer has his own commodity sequence, the support 
of a given sequential pattern is defined as the fraction whose 
denominator and numerator are the number of all commod-
ity sequences and those containing the pattern, respectively 
[24].

To handle the problem of frequent sequential pattern 
discovery on sequence databases, many works, such as 
AprioriAll [24] and GSP [28], were successively proposed 
by Agrawal and Srikant. The contributions of GSP com-
pared to those of AprioriAll are the extension of time con-
straints, a sliding window and a taxonomy hierarchy tech-
nique. According to the search strategy, existing algorithms 
can be divided into breadth-first and depth-first algorithms. 
Breadth-first algorithms such as GSP generate all candi-
date k-sequences by using (k − 1)-sequences. Depth-first 
algorithms such as Spade [30], Lapin [32], Spam [31] and 
PrefixSpam [33] were designed to recursively extend each 
sequence containing single items. For example, let the set 
of all items be {A, B, C}; a breadth-first algorithm will first 
consider the 1-sequences {A}, {B} and {C}. Then, the algo-
rithm will consider the 2-sequences {A} → {A}, {A} → 
{B}, {A} → {C}, {A, B}, {A, C} and so on. A depth-first 
algorithm will explore potential sequential patterns follow-
ing this order: {A}, {A, B}, {A, B, C}, {A} → {A}, {A} → 
{A, B} and so on.

According to the database structure, existing algorithms 
can also be divided into horizontal and vertical algorithms. 
The horizontal algorithms such as GSP scan the whole 
sequence database to calculate the support of candidate 
patterns. Another problem for GSP is that it may generate 
patterns that do not exist in the database. The third is that 
at every moment it must retain all frequent patterns. The 
vertical algorithms such as Spade utilize a vertical database 
representation indicating the itemsets in which each item 
appears in the sequence database. More details and exam-
ples can be found in [27]. A vertical representation can be 
regarded as a kind of compression of a horizontal one. The 
performance of algorithms based on vertical representations 
is better with a more sparse sequence database, and vice 
versa.

For MTSs, sequential patterns can be classified into 
along-first and across-first patterns. In terms of along-
first methods such as DTA [42] and TARD [43], various 
sequence clusters are obtained by frequent subsequences 
mining and clustering successively within each univariate 
sequence. Then, all subsequence clusters are used to con-
struct the expected pattern and those that are frequent will be 
found. For the across-first STAP, different frequent states are 
discovered. Each state contains at least one variable.

Then, all frequent states, treated as 1-sequential pat-
terns, are used to construct longer patterns. In Table 1, one 
example of an along-first sequential pattern is { (a1, LL), 
(a1, LLN), (a1 , LNN)} → { (a3 , NHH), (a3 , HHNL)} → { (a2, 
NLLN), (a2, LLNN)}. One example of an across-first pattern 
is { (a1, L), (a2, H)} → { (a1, N), (a2, L), (a3, L)} → { (a3, H)}. 
Compared to patterns from sequence databases, those from 
MTSs are naturally different in two respects:

• Pattern length. Here, the length of a sequential pattern 
is the number of states, irrespective of the length of the 
states. For a sequence database, A sequence (A1 , A 2 , ..., 

Fig. 2  The relationships among four types of data

Table 1  An example of a symbolic MTS

T (4/2019)  A
Temperature (a1) PM2.5 (a2) CO2 (a3)

20 ( t1) L H N
21 ( t2) L N L
22 ( t3) N L L
23 ( t4) N L N
24 ( t5) H N H
25 ( t6) H N H
26 ( t7) L L N
27 ( t8) N H L
28 ( t9) H N L
29 ( t10) L H N
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A n ) is called a k-sequence if it contains k items, or, in 
other words, if k = |A1 | + |A2 | + ...+ |An | . The lengths 
of patterns ({A, B}) and ({A}, {B}) are 1 and 2 in our 
work, respectively. However, their lengths are both 2 in 
works based on sequence databases.

• Pattern support. For sequential patterns in sequence data-
bases, the occurrences are counted according to the number 
of matched transactions. For the ones in MTSs, the occur-
rences are counted according to the number of matched posi-
tion sequences. The a priori property is not available for this 
number. For example, the number of occurrences of B[0, 2]
A is 3, namely, (2, 3), (2, 5) and (4, 5), which is larger than 
that of (B), namely, (2) and (4). Fortunately, there are three 
matching conditions, general, one-off and non-overlapping 
sequences, proposed below to ensure this property.

In terms of univariate sequences, the matching condi-
tion is the foundation of pattern discovery. There are three 
kinds of pattern matching conditions, i.e., non-overlapping 
[46], one-off [47] and general [48]. For example, given a 
univariate sequence S = A1B2A3B4A5 of length 5, a peri-
odic wildcard gap [0, 2] and a pattern P = A[0, 2]B[0, 2]A, 
the occurrences of this pattern are (1, 2, 3), (1, 2, 5), (1, 4, 
5) and (3, 4, 5). The number of occurrences counted under 
the general condition is 4. Because each of the characters 
in the univariate sequence can be used only once under the 
one-off condition, there is only one occurrence, such as (1, 
2, 3) for P. Under the non-overlapping condition, the num-
ber of occurrences of P is 2, namely, (1, 2, 3) and (3, 4, 5). 
In a word, the non-overlapping condition is less restrictive 
than the one-off condition, while it is more specific than the 
general one for pattern mining.

Tri‑SASP and Temporal Association Analysis

In this section, we first discuss the formal description of an 
MTS. Second, two strategies for the state tri-partition alphabet 
are proposed. Third, the Tri-SASP is defined by the given tri-
partition state alphabet. Fourth, two algorithms of frequent 
Tri-SASP discovery are proposed. Finally, some running 
examples of algorithms are presented to improve readability.

Data Model

With the development of sensor technology, the collection of 
time series data becomes convenient and reliable. In many 
applications, we are initially interested in the following data 
model:

Definition 1 An MTS is a quadruple

where T = {t1, t2,… , tn} is a finite set of time points, 
A = {a1, a2,… , am} is a finite set of variables, Va is the set 
of value ranges of variable a, and f ∶ T × A → V is the map-
ping function.

If the value ranges of all attributes are sym-
bolic, we call it a symbolic MTS. We further assume 
that ti+1 − ti = ti − ti−1 ( 2 ≤ i ≤ n − 1 ). For brevity, 
∀i ∈ [1, n], j ∈ [1,m], f (ti, aj) = fi,j indicates the value of aj 
at ti . Moreover, let fi,∗ = {(a1, fi,1), (a2, fi,2),… , (am, fi,m)}.

Example 1 Table 1 shows an example of an MTS. Here, T = 
{t1, … , t10} = {20/4/2019, ..., 29/4/2019} indicates that there 
are daily data for 10 consecutive days. Each row represents 
a time point, and each column represents a kind of sensor. 
A = {a1, a2, a3} is the set of sensors, where a1, a2 , and a3 rep-
resent temperature, PM2.5 and CO2 , respectively. The value 
ranges are Va1

= Va2
= Va3

 = {H, L, N}, where H, N and L 
indicate high, normal and low, respectively. f (t1, a2) = f1,2 
= H indicates that the value of PM2.5 on 20/4/2019 is high. 
Moreover, f1,∗ = {(a1, L), (a2, H), (a3, N)}.

Strategies for the Tri‑Partition State Alphabet

First, the definition of a state is fundamental for our three-
way state alphabet. Generally, one can define the system 
state with some or all of the variables and their values in 
an MTS. A state is a set of attribute-value pairs and has the 
following two forms:

Definition 2 Given an MTS S = (T, A, V = ∪a∈AVa , f), a state 
with the set form is

 while a state with the logic form is

subject to

For brevity, the set of all states is denoted as

When s ⊇ s′ , we call s a sub-state of s′ . Accordingly, s′ 
is called a super-state of s. A state is a sub-state (and super-
state) of itself.

(1)S = (T ,A,V = ∪a∈AVa, f ),

(2)s = {(a, va)|a ∈ A� ⊆ A, va ∈ Va ⊆ V},

(3)s = ∧a∈A�⊆A,va∈Va
(a, va),

∀1 ≤ i ≠ j ≤ |s|, ai ≠ aj.

L = 2{(a,va)|a∈⊆A,va∈Va⊆V}.
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Example 2 State s8 = {(a1, L) , (a2, H)} or equivalently (a1, L) 
∧ (a2, H) is a valid state, but {(a1, L) , (a1, H)} is not. When 
we know s8 ⊇ s1 = {(a1, L)} , we have that s8 is a sub-state 
of s1 . Moreover, we also say that s8 is more specific than s1 
while s1 is more general than s8.

We are usually interested in whether or not a state matches 
an MTS at a time point. Therefore, we propose the concept 
of state matching as follows: Let S = (T ,A,V = ∪a∈AVa, f ) 
be an MTS. State s = {(a, va)|a ∈ A� ⊆ A, va ∈ Va} matches 
S at t ∈ T  iff s ⊆ ft,∗ , namely, ∀ a ∈ A� , f (t, a) = va . We fur-
ther denote the state matching as a function

Hence, its support is given by

Sup(s, S) can be abbreviated as Sup(s) when S is specified 
in context. For brevity, given a support threshold � , the set 
of frequent states is

Second, we propose two types of tri-partition state alpha-
bet Σ , corresponding to two strategies. One is called support 
partition (SP), and the other is called compression parti-
tion (CP). Practically, Σ is specified by the user. No matter 
what kind of Σ we obtain, the following assumptions must 
be established:

• POS ∪ BND ∪ NEG = Σ.
• POS ∩ BND = � , POS ∩ NEG = � and BND ∩ NEG = �.

Let � and � be two support thresholds. Given an MTS 
S and s ∈ Σ , the SP strategy is

In this case, POS ∪ BND ∪ NEG = Lgen ∪ NEG = L . 
The states in NEG are too numerous to be presented. All 
states containing N, e.g., (a1, L) ∧ (a2, N) , are ignored at 
first. This is because N indicates normal, which contains 
little or no information. Once we remove the value N, 
the number of candidate states will greatly decrease. 
In other words, all states containing N must belong to 
NEG.

(4)m(S, t, s) =

{
1, if s matches S at t;

0, otherwise.

(5)Sup(s, S) =

∑
t∈T m(S, t, s)

�T� .

L
gen = {s ∈ L|Sup(s) ≥ �}.

(6)

⎧⎪⎨⎪⎩

s ∈ POS, if Sup(s) ≥ 𝛽;

s ∈ BND, if 𝛼 ≤ Sup(s) < 𝛽;

s ∈ NEG, otherwise.

Example 3 In accordance with Tables 1 and 2 shows an 
example of the SP strategy. State s9 = (a1, L) ∧ (a3, L) 
belongs to NEG, because Sup(s9) =

1

10
< 𝛼 . The sig-

nificance levels of (a1, L) ∧ (a2, N) ∧ (a3, L) and s9 are 
almost equivalent. When we do not consider N for each 
variable, the number of all states is only 26, where s1 , 
s2 belong to POS, s3 to s8 belong to BND and the rest 
belong to NEG. In contrast, this number will be 63 when 
N is preserved.

The CP strategy is formally presented as follows: Initially, 
the set of frequent maximal states is

and the set of frequent closed states is

Consequently, the CP strategy is

In this situation, the states in NEG are frequent but 
redundant. The union of the three regions is Lgen ⊆ L.

Example 4 According to Tables 1 and 3 shows the state 
tri-partition results of the CP strategy. Similarly, all states 
containing N are ignored for brevity. In comparison with 
Table 2, s6 , belonging to BND, instead belongs to NEG. s1 , 
belonging to POS, instead belongs to BND. s5 , s7 and s8 , 
belonging to BND, instead belong to POS.

Finally, Table 4 shows a comparison of the SP and 
CP strategies. Given a set of states, such as L and Lgen , 
the SP strategy needs two thresholds � and � , where 
� is additionally introduced. In contrast, the CP strat-
egy needs only � , which maintains the simplicity of the 
inputs.

L
max = {s ∈ L

gen|∄s� ∈ L
gen, s� ⊇ s},

L
clo = {s ∈ L

gen|∄s� ∈ L
gen, s� ⊇ s, Sup(s�) = Sup(s)}.

(7)

⎧⎪⎨⎪⎩

POS = L
max;

BND = L
clo − L

max;

NEG = L
gen − L

clo.

Table 2  An example of the SP strategy ( Σ = L , � = 0.2, � = 0.4)

POS BND NEG

s1 = (a1, L)(0.4) s3 = (a1, H)(0.3) The infrequent
s2 = (a3, L)(0.4) s4 = (a2, H)(0.3)

s5 = (a2, L)(0.3)

s6 = (a3, H)(0.2)

s7 = (a1, H) ∧ (a3, H)(0.2)

s8 = (a1, L) ∧ (a2, H)(0.2)
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Pattern and Rule

First, in the previous work [44], ∀s ∈ L
gen is a component 

of STAP, while in our work, the components of Tri-SASP 
come from the POS and BND of the three-way state alpha-
bet Σ.

Definition 3 Given a three-way state alphabet Σ = POS∪

BND ∪ NEG and a tri-wildcard gap Δ = [G,G] , 0 ≤ G ≤ G , 
a Tri-SASP is

where k is the length of P; ∀i ∈ [1, k], si ∈ POS ∪ BND; G 
and G are called the minimal and maximal gap constraints 
of P, respectively; and no states of POS may occur in the 
interval Δ.

Example 5 With Table 2, pattern s2Δs3Δs6 is a Tri-SASP. 
With Table 3, this pattern is not a Tri-SASP, because the 
state s6 belongs to NEG region under the CP strategy. In 
other words, all patterns containing state s6 are not Tri-
SASPs using Table 3.

Figure 3 shows the tri-partition and actions for a given state 
set. States in POS can only be used to construct a Tri-SASP. 
States in NEG can only be matched by a tri-wildcard gap. 
States in BND can be used to either construct a Tri-SASP or 
be matched by a tri-wildcard gap.

Second, we present the pattern matching rules for Tri-
SASPs. Naturally, a Tri-SASP P = s1Δs2 …Δsk always occurs 
in an MTS S with a position sequence

where ∀j ∈ [1, k − 1], i1 ∈ [1, |T|] and 0 ≤ G ≤ ij+1 − ij−

−1 ≤ G . Hence, we can present the formal description of the 
matching rule as follows:

(8)P = s1Δs2 …Δsk = s1[G,G]s2 …[G,G]sk,

I = i1i2 … ik,

Given S = (T ,A,V , f ) , Σ = POS ∪ BND ∪ NEG, 
Δ = [G,G] , P = s1Δs2 … sk and I = i1i2 … ik as a position 
sequence, the matching of P on S at I is a Boolean function

where sj ∈ POS ∪ BND, ∀j ∈ [1, k − 1], q ∈ [ij, ij+1] and ∀s ∈ 
POS, s ⊈ ftq,∗ or m(tq, s) = 0.

Example 6 With Tables  1 and 2, let Δ = [0, 6] , and let 
P = s2[0, 6]s8 = (a3, L)[0, 6](a1, L) ∧ (a2, H) be a Tri-SASP. 
The set of positions matching (a3, L) is {t2 , t3 , t8 , t9} . The set 
matching (a1, L) ∧ (a2, H) is {t1, t10} . Therefore, the candi-
date position sequences matching P are t3t10 , t8t10 and t9t10 . 
The position sequence t2t10 does not match P because the 
diversity between positions t2 and t10 exceeds Δ = [0, 6] , i.e., 
10 − 2 − 1 = 7 ∉ [0, 6] . The states of POS are s1 = (a1, L) 
and s2 = (a3, L) , whose matching position sets are {t1 , t2 , t7 , 
t10} and {t2 , t3 , t8 , t9} , respectively. Because positions t2 , t7 
and t8 occur between t3 and t10 , position sequence t3t10 does 
not match P. The only correct position sequence matching P 
is t9t10 . Similarly, let P�

= s8[0, 6]s2 ; the candidate position 
sequences matching P′ are t1t2 , t1t3 and t1t8 , and the correct 
one is t1t2.

Additionally, in the most ideal case, there are G − G + 1 
types of ij+1 for each ij . Moreover, there are |T| total time 
points in MTS S. Hence, the set of total position sequences 
of P in S is denoted as I  , and its cardinality is

(9)m(S,P, I) =

{
1, if ∀1 ≤ j ≤ k, sj matches S at tij ;

0, otherwise,

Table 3  An example of the CP strategy ( Σ = L
gen , � = 0.2)

POS BND NEG

s5 = (a2, L)(0.3) s3 = (a1, H)(0.3) s6 = (a3, H)(0.2)

s2 = (a3, L)(0.4) s1 = (a1, L)(0.4)

s7 = (a1, H) ∧ (a3, H)(0.2) s4 = (a2, H)(0.3)

s8 = (a1, L) ∧ (a2, H)(0.2)

Table 4  Comparison of the SP and CP strategies

Name Strategy Inputs POS ∪ BND ∪ NEG

SP Eq. (6) �, � L (POS ∪ BND = L
gen)

CP Eq. (7) � L
gen

Fig. 3  Tri-partition and actions of the state alphabet
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Example 7 With Tables 1 and 2, let Δ = [0, 6] and let there 
be a Tri-SASP P = s2[0, 6]s8 of length 2; the cardinality of 
its total position sequences is 10 × (6 − 0 + 1)2−1 = 70.

Consequently, we find that the support of Tri-SASP P is

Example 8 With Tables 1 and 2, let P = s2[0, 6]s8 , IP = 
{t9t10} , |IP| = 1 ; hence, the support of P is 1

70
.

Then, let � ∈ [0, 1] be the threshold specified by users; the 
set of frequent Tri-SASPs is

Third, we present the pattern growth operations of Tri-
SASP. For this purpose, the definitions of sub-patterns and 
super-patterns are necessary.

Definition 4 Given two Tri-SASPs P1 = s1Δs2 … sm and 
P2 = s�

1
Δs�

2
… s�

n
 , m ≤ n , P1 is called a sub-pattern of P2 iff

where ∀j ∈ [1,m − 1], ij+1 = ij + 1 . For brevity, this relation-
ship is denoted as P1 ⊑ P2.

Example 9 With Tables 1 and 2, let P1 = s1Δ s2Δ s3Δs4 , 
P2 = s3Δs4 , and P3 = s7Δs8 . We have P2 ⊑ P1 and P2 ⊑ P3 . 
For the latter, this is because s3 ⊆ s7 and s4 ⊆ s8.

In contrast, given a Tri-SASP P = s1Δs2Δ…Δsk of 
length k, the number of its sub-patterns is

Example 10 With Tables 1 and 2, let P = s1Δs2Δs3 = (a1, 
L)∧(a2, H)∧(a3, N)Δ(a1, N)∧(a3, L)Δ(a2, N)∧(a3, H). 
The number of all sub-patterns of P is (23 − 1 + 22 − 1

|I| = |T| × (G − G + 1)k−1.

(10)Sup(S,P) =
|IP = {I ∈ I|m(S,P, I) = 1}|

|I| .

P = {P|Sup(S,P) ≥ �}.

(11)∃ a sequence i1i2 … im, s.t. ∀j ∈ [1,m], sj ⊆ s�
ij
,

(

k∑
l=1

k−l+1∑
i=1

l∏
j=1

(2|si+j−1| − 1)) − 1.

+22 − 1) + ((23 − 1) × (22 − 1) + (22 − 1) × (22 − 1)) + (23−

1) × (22 − 1) × (22 − 1) − 1 = 13 + (21 + 9) + 42 − 1 = 84.

Next, we can present the rule of the pattern growth opera-
tion as follows:

Definition 5 The pattern growth operation between two Tri-
SASPs P1 = s1Δs2 … sm and P2 = s�

1
Δs�

2
… s�

n
 is

This growth operation is subject to 

(1) P1 ⊗ P2 ≠ P2 ⊗ P1;
(2) P1 ⊗ P2 ⊗ P3 = P1 ⊗ (P2 ⊗ P3);
(3) if P3 = P1 ⊗ P2 , P3 is called a Tri-SASP, P1,P2 ⊑ P3 ; 

and
(4) if P and P

′

 are two sets of Tri-SASPs, then

Example 11 With Tables 1 and 2, let P1 = s2 , P2 = s3 , P3 = s4 
and P4 = s3Δs4 . First, P1 ⊗ P2 = s2Δs3 ≠ s3Δs2 = P2 ⊗ P1 . 
Second, P1 ⊗ P2 ⊗ P3 = s2Δs3Δs4 = P1 ⊗ (P2 ⊗ P3). Third, 
P4 = s3Δs4 = P2 ⊗ P3 , and with Definition 4, we know 
P2,P3 ⊑ P4 . Specifically, the result of s1Δs2 ⊗ s2Δs3 is 
s1Δs2Δs2Δs3 instead of s1Δs2Δs3 . The latter can be con-
structed by s1Δs2 ⊗ s3 , s1 ⊗ s2Δs3 , or s1 ⊗ s2 ⊗ s3.

Table 5 shows the comparisons among the Tri-SASP, 
STAP, tri-pattern and weak-wildcard pattern. There are 
five aspects of these patterns, as follows:

• Partition strategy. Except for STAP, whose alphabet is 
not partitioned, all of the patterns introduce a partition 
strategy. Tri-SASPs and tri-patterns are based on a tri-
partition alphabet. Weak-wildcard patterns are based on 
a binary partition alphabet.

• Alphabet. The components of the Tri-SASP and STAP 
are called states. However, the state alphabet is tri- 
partitioned into POS, BND and NEG regions with user-
specified strategies. More details can be found in Table 4. 
For the tri-pattern, there are strong, medium and weak ele-
ments, while for the weak-wildcard pattern, we have only  
strong and weak ones. A tri-pattern is a generalization 

(12)P1 ⊗ P2 = s1Δs2 … smΔs
�
1
Δs�

2
… s�

n
.

P⊗ P
�

= {P⊗ P
� |P ∈ P,P

�

∈ P
�

}.

Table 5  Comparisons among Tri-SASPs and existing patterns

Name Partition strategy Alphabet ( Σ) Component Gap matching Data model

Tri-SASP Tri-partition {POS, BND, NEG} POS ∪ BND BND ∪ NEG Multivariate ( |A| > 1)
STAP None L

gen
L
gen

L
gen Multivariate ( |A| > 1)

Tri-pattern Tri-partition {POS, BND, NEG} POS ∪ BND BND ∪ NEG Univariate ( |A| = 1)
Weak-wildcard pattern [59] Binary partition {POS, NEG} POS NEG Univariate ( |A| = 1)
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of the weak-wildcard pattern, while a Tri-SASP is also a 
generalization of the tri-pattern obtained by extending a 
single attribute to multiple attributes.

• Component construction. With a given alphabet, differ-
ent sequential patterns have various construction strate-
gies. For the Tri-SASP, the components come from POS 
∪ BND. For STAP, its components belong to Lgen , which 
is the set of frequent states. For a tri-pattern, its compo-
nents also come from POS ∪ BND. For a weak-wildcard 
pattern, the components belong only to POS.

• Gap matching condition. These four sequential patterns 
are all based on the general one. The differences are that 
(1) the Tri-SASP, tri-pattern and weak-wildcard pattern 
do not permit the elements of POS to occur in the wild-
card gap between each pair of adjacent components; (2) 
the wildcard gaps of the Tri-SASP and tri-pattern allow 
the elements of BND ∪ NEG to occur in itself; (3) the 
wildcard gap of STAP allows all frequent states to occur 
in it; and (4) the wildcard gap of the weak-wildcard pat-
tern permits only the elements of NEG to occur.

• Data model. The Tri-SASP and STAP are obtained for 
an MTS, whose number of attributes is larger than 1. The 
Tri-pattern and weak-wildcard pattern are discovered in a 
univariate time series, whose attribute number is merely 1.

Finally, a new type of temporal association rule can be 
obtained with our Tri-SASP.

Definition 6 Given a pattern P = s1Δs2 … sk and a dividing 
position index i ∈ [2, k] , let P[∗,i) = s1Δ s2 … si−1 and P[i,∗] 
= siΔ si+1 … sk . The type of rule is

where 
Δ

⟹ can be abbreviated as ⟹ when Δ is specified. 
The confidence of r is

Example 12 With Tables 1 and 2, letting P = s2[0, 6]s8 , we 
find that IP = 1 and Sup(P) = 1

70
 . There is only one rule, 

r ∶ s2 ⇒ s8 , that we can obtain. Hence, the confidence of r is

When we obtain Sup(P) = 1

70
 , we can explain it as “the 

probability of P happening is 1
70

 .” When we obtain c(r) = 1

28
 , 

we can explain it as “if state s1 happens, the probability of 
state s8 happening within a 0 to 6 time delay is 1

28
.”

(13)r ∶ P[∗,i)

Δ

⟹P[i,∗],

(14)c(r) =
Sup(P[.,i) ⊗ P[i,∗])

Sup(P[∗,i))
=

|IP|
|IP[∗,i)

| × |Δ|k−i+1 .

c(r) =
|IP|

|Is2 | × (6 − 0 + 1)2−2+1
=

1

4 × 7
=

1

28
≠

1

70
.

Due to the temporal property of MTSs, a Tri-SASP P 
of length k can generate k − 1 rules at most. There is a 
confidence threshold � for r such that if the confidence of 
r is no less than � , we say that r is a confident rule. Con-
sequently, the set of all confident rules can be formally 
described as

Generally, a rule r ∶ P1

Δ

⟹P2 is read as “if sequential pat-
tern P1 happens, then the probability of P2 happening within 
a delay of G to G is c(r)”. When n = 2 , this rule can be read 
as “if state s1 happens, then the probability of s2 happening 
within a delay of G to G is c(r).” Compared to classical asso-
ciation rules in transaction databases, our Tri-SASP rules 
have three major differences:

• There is a time delay Δ = [G,G] between the anterior and 
posterior parts.

• Both the anterior and posterior parts of the rule are Tri-
SASPs.

• Each state of a Tri-SASP belongs to POS or BND.

Problem Statement

Problem 1 Frequent Tri-SASP discovery.
Input: S = (T ,A,V , f ) , Δ = [G,G] , Σ = POS ∪ BND ∪ 

NEG, � and �.
Output: P = {P|Sup(s ∈ P, S) ≥ �, Sup(P, S) ≥ �}.
Σ = POS ∪ BND ∪ NEG can be obtained through the 

process of frequent state mining [29] and tri-partitions. In 
the worst situation ( � = 0 ), the number of all possible fre-
quent states is

Given a Tri-SASP P = s1Δs2 … sk , for each j ∈ [1, k] we have 
up to M types of state for sj . Hence, there are Mk types of 
P in total. Therefore, the time complexity of obtaining all P 
with length k is |I| ×M

k . Therefore, the time complexity of 
finding all possible P with lengths ranging from 1 to |T| = n is

This equation shows a high time complexity, so an 
important proposition is made to greatly reduce the search 
space.

Proposition 1 If two Tri-SASPs are subject to P ⊑ P′,

R = {r|c(r) ≥ �}.

M = (
∏
a∈A

(|Va| + 1)) − 1.

n∑
k=1

|I| ×M
k.

Sup(P�) ≤ Sup(P).
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Proof We only need to consider the condition where 
P contains one fewer component than P′ . Formally, let 
P = s1Δs2 … sk−1 and P� = s1Δs2 … sk . Therefore, we have

On the other hand, each match of P corresponds to at 
most |Δ| matches of P′ , i.e.,

Therefore, we have

Problem 2 Confident temporal association rule discovery.
Input: P = {P|Sup(s ∈ P, S) ≥ �, Sup(P, S) ≥ �} and �.
Output: R = {r|c(r) ≥ �}.

The time complexity of Problem 2 is much less than that 
of Problem 1. This is because the most time-consuming 
process, namely, frequent Tri-SASP discovery, has been 
solved in the later problem. Hence, the cost of generating 
a rule is constant. In the worst situation, there are a total 
of 

∑n

k=1
M

k Tri-SASPs (k is the length of a Tri-SASP). 
Therefore, we have up to

temporal association rules to be generated.
Additionally, the search space of confident rules can be 

reduced by the following proposition: Given a Tri-SASP 
P = s1Δs2 … sk and two indices 2 ≤ i < j ≤ k , we can obtain 
P1 = s1Δs2 … si−1 , P2 = siΔsi+1 … sk , P�

1
= s1Δs2 … sj−1 , 

P�
2
= sjΔsj+1 … sk ; then, we have

Proposition 2 The confidence of r ∶ P1 → P2 is no larger 
than that of r� ∶ P�

1
→ P�

2
 , namely

|I�| = |I| × |Δ|.

|I�
P
| ≤ |IP| × |Δ|.

Sup(P�) =
|I�

P
|

|I�| ≤
|IP|
|I| = Sup(P).

n∑
k=1

(Mk × (k − 1))

(15)c(r) ≤ c(r�).

Proof With Eq. (13), we know c(r) = Sup(P1⊗P2)

Sup(P1)
 and 

c(r�) =
Sup(P�

1
⊗P�

2
)

Sup(P�
1
)

 . First, P1 ⊗ P2 = P�
1
⊗ P�

2
= P . Second, 

because i < j , we have P1 ⊑ P′
1
 . Therefore, we have 

c(r) ≤ c(r�).

Methods

In this section, we first present the framework of frequent 
Tri-SASP discovery. With the SP and CP strategies (see Eq. 
(6) and Eq. (7)), Σ = POS ∪ BND ∪ NEG can be initialized. 
Second, we discuss the design of the proposed horizontal 
and vertical methods. Third, we propose a technique for con-
fident temporal association rule discovery. Finally, a running 
example for all the above algorithms is presented.

Frequent Tri‑SASP Discovery

Figure 4 shows the general process of frequent Tri-SASP 
discovery. This framework consists of three major phases: 
(1) obtaining the three-way state alphabet; (2) discovering 
frequent Tri-SASPs; and (3) generating confident temporal 
association rules. In the first phase, the set of frequent states 
L
gen can be initially obtained by the frequent itemsets mining 

techniques [29]. The threshold � is used here.
With the specified SP (see Eq. (6)) or CP (see Eq. (7)) 

strategies, the three-way state alphabet Σ = POS ∪ BND ∪ 
NEG can be obtained. For the SP strategy, we need to scan 
L
gen only once to obtain regions POS and BND. There are 

two reasons why it is unnecessary to compute and store 
NEG: (1) computing NEG is too time consuming to be con-
sidered; and (2) even if we obtain NEG, the states in this 
region still cannot be used to construct patterns. Hence, if we 
chose the SP strategy, NEG indeed exists in Σ but is actually 
empty for the algorithm.

For the CP strategy, the first step is to compute Lclo 
and Lmax with Lgen and � . According to Eq. (7), the 
positive region is just Lmax , which is the most spe-
cific. The boundary region is the difference set of 

Fig. 4  The framework of frequent Tri-SASP discovery
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the closed state set and maximal state set, namely, 
L
clo − L

max = {s|s ∈ L
clo, s ∉ L

max} . The negative region 
is the difference set of the general state set and closed state 
set, namely, Lgen − L

clo = {s|s ∈ L
gen, s ∉ L

clo}.
Algorithm 1 shows the process of frequent Tri-SASP dis-

covery. Line 2 shows that only states in NEG cannot be the 
components of patterns. All frequent patterns are searched 
in a width-first/levelwise manner. In other words, longer 
frequent Tri-SASPs will be checked iff all of the shorter 
frequent Tri-SASPs are obtained.

Because the process of support computing is the 
most time consuming, a pre-pruning technique is pro-
posed on Lines 8-10. Here, P.tail is actually the maxi-
mal suffix of P; namely, if P = s1Δs2 … sk , P.tail will be 
s2Δs3 … sk(k ≥ 2) . According to the a priori/down-closure 
property (see Proposition 1), if P.tail is not frequent, P 
must be infrequent. In terms of Line 11, we propose two 
type of techniques to compute the support of the given 
Tri-SASP. One of them, called horizontal support com-
puting (H-Sup), is presented in Algorithm 2. The other, 
called vertical support computing (V-Sup), is presented 
in Algorithm 3.

Algorithm  2 presents the process of the horizontal 
support computing technique. For each given Tri-SASP 
P = s1Δs2 … sk , its occurrence is counted by rescanning 

the MTS S = (T ,A,V , f ) . On Line 4, the number of posi-
tion sequences matching s1 and beginning with ti ∈ T  is 
obtained. The function “Count(.)” is proposed to recur-
sively determine the number. Once we locate si at tj , the 
occurrence of si+1 can be determined directly. Namely, si+1 
can occur only between tj+G+1 and t

j+G+1
.

For more details, parameters � ∈ [1, |T| − k × (G + 1)] 
and � ∈ [2, k] indicate the index of the time point and that of 
the state from P. Most importantly, Lines 16-20 implement 
the matching rule of Tri-SASP. In short, if there is a state 
from a POS region located between the occurrence positions 
of s�−1 and s� , the current occurrence cannot be counted. In 
other words, only states in POS cannot be ignored.

The greatest difference between vertical and horizontal 
support computing approaches is the organization of the 
MTS. In terms of classic association analysis, with items and 
their transaction IDs (TIDs), the support of an itemset can be 
obtained by computing the intersection of the TID sets of all 
corresponding items. In this way, vertical-based algorithms 
do not need to re-scan the original dataset. Therefore, we 
can also maintain Tri-SASPs and their position sequences to 
obtain frequent Tri-SASPs. First, we define a novel vertical 
structure to store the information of the position sequences.



 Cognitive Computation

1 3

Definition 7 Given an MTS S and a Tri-SASP P = s1Δs2 … sk , 
the vertical structure of position sequences IP is a set of tuples

where C(ik) = |{I|I ends with ik}| , namely, the number of 
position sequences ending with ik.

Because this vertical structure focuses on the information 
of the termination of position sequences, TPList represents 
the list of terminal positions.

Consequently, we are interested in the interaction of two 
TPLists. Given two Tri-SASPs P = s1Δs2 … sk (k ≥ 1) and 
P� = s�

1
 , their TPLists are P.TPList = {(C(ik), ik)|ik ∈ I ∈ IP} 

and P′.TPList = {(1, i�
1
)|i�

1
∈ I� ∈ IP� } , respectively. Hence, 

the TPList of P�� = P⊗ P� = s1Δs2 … skΔs
�
1
 is

Note that the second factor of ⊗ ( P′ ) must contain a sin-
gle state. Moreover, when |P| = 1 , a Tri-SASP is actually 
a state. In this way, the last position becomes the first in 
order to guarantee the correctness of support computing. 
Otherwise, if the length of P′ is no less than 2, we must 
indicate the position of the first state, which would break the 
structure of the TPList.

Second, Algorithm 3 is proposed according to Eqs. (16) 
and (17). Lines 4-7 implement the Tri-SASP matching rule 
with a vertical TPList. There is a state in POS, and one of 
its terminal positions is between the last position of the first 
Tri-SASP (P�) and that of the second (P��).

Finally, the space complexity of the vertical technique 
(V-Sup) is required because the TPList brings additional 
memory consumption. In the worst situation, the maximal 
space of the TPList of a Tri-SASP is 2n. Therefore, the space 
complexity of Algorithm 3 is only

(16)P.TPList = {(C(ik), ik)|ik ∈ I ∈ IP},

(17)P��.TPList = {(C(ik), i
�
1
)|i�

1
− ik ∈ [G + 1,G + 1]}.

Temporal Association Rule Discovery

Given a Tri-SASP of length k, we can obtain k − 1 confident 
rules at most ( k ≥ 2 ). Algorithm 4 shows the process of con-
fident temporal association rule discovery. When k = 2 , we 
have rules such as s1 ⇒ s2 . However, there is also a kind of 
Tri-SASP like s1Δs2 . They are similar but completely dif-
ferent in terms of both the semantics and metrics (see Eq. 
(10) vs. Eq. (13)).

Running Example

With Tables 1 and 3, we present the process of frequent Tri-
SASP discovery. For brevity, we discuss only the process 
of mining 1-P and 2-P for horizontal and vertical support 
computing techniques. Initially, we let � = 0.02 , � = 0.2 and 
Δ = [0, 6] . Because 𝛾 < 𝛼 , 1-P = POS ∪ BND.

Horizontal Computation

First, the set of candidate Tri-SASPs of length 2, namely, 
2-C , is generated. On the basis of Table  3, there are 
7 × 7 = 49 candidate Tri-SASPs, such as P = s2Δs8.

Second, the algorithm scans Table 1 from t1 to t10 to 
search the time positions matching state s2 . t2 is the first 
position matching s2 . Then, the algorithm scans t3 to t9 with 
Δ = [0, 6] to determine all positions matching s8 . There is no 
position matching s8.

Third, the algorithm determines that t3 matches s2 . 
Then, the algorithm scans t4 to t10 to determine all posi-
tions matching s8 . Position t10 matches s8 ; however, there 
is more than one state in POS occurring between t4 and t10 , 

O(

|T|∑
k=1

2|T|) = O(|T| × (|T| + 1)) = O(n2).
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such as s5 , s2 and s7 . Once the algorithm determines that a 
state in POS happens in the current gap [t4, t10] , this itera-
tion will terminate.

Fourth, t8 is the third position matching s2 . When t9 does not 
match s8 and s2 is found to occur in t9 , the iteration is terminated.

Fifth, t9 is the fourth position matching s2 . t10 is found to 
match s8 , and there is no state in POS occurring in the gap 
[t10, t16] . Because the length of MTS is 10, namely, |T| = 10 , 
the wildcard gap [t10, t16] is equivalent to [t10, t10].

Therefore, IP = {t9t10} , |IP| = 1 , and Sup(P) = 1

10×7
=

1

70

< 𝛾 = 0.02 . P is not a frequent Tri-SASP. The supports of 
the other candidate Tri-SASPs can be obtained in the same 
way.

Vertical Computation

Figure 5 shows an example of TP-List production for states 
s2 and s8 . The only difference between the horizontal and 
vertical techniques is the method of support computing. 
First, the algorithm constructs a TP-List for each frequent 
Tri-SASP of length 1, namely, all elements of 1-P . For 
example, the TP-List of s2 is {(1, t2) , (1, t3) , (1, t8) , (1, t9)} . 
The TP-List of s8 is {(1, t1), (1, t10)}.

Second, the TP-List of P = s2[0, 6]s8 is the cartesian 
product of those of s2 and s8 . Treating t1 as a termination, the 
wildcard gap is [t−6, t0] ; then, no start position of s2 occurs 
in it. Treating t10 as a termination, the wildcard gap is [t3, t9] ; 
then, start positions t3 , t8 and t9 occur in it.

Third, we remove these invalid position sequences. 
We determine whether there is at least one state in POS 
occurring between the starting and terminating posi-
tions. For example, state s5 happens at t4 , which occurs 
between t3 and t10 . Hence, t3t10 is not a matching position 
sequence.

Fourth, the TP-List of P is {(1, t10)} , which means 
there is a matching position sequence ending with t10 . 
Hence, the occurrence of P is 1, and the support is 
1

70
< 𝛾 = 0.02 . P is not a frequent Tri-SASP. The TP-

Lists of the other candidate Tri-SASPs can be obtained 
in the same way.

Tri‑SASP Growth

Because � is set to 0.02, all frequent Tri-SASPs of length 2 
are obtained by either the horizontal or vertical algorithm. 
The results of 2-P are listed as follows:

(a3, L)[0,6](a2, L)(0.0286), (a3 , L)[0,6](a3 , L)(0.0286), 
(a1 , H)[0,6](a1 , L)(0.0286), (a1 , L)[0,6](a3 , L)(0.0429) and 
(a2 , H)[0,6](a3, L)(0.0286).

To determine all frequent Tri-SASPs of length 3, the set 
of candidate Tri-SASPs, namely, 3-C = 2-P⊗1-P = {(a3, 
L)[0,6](a2, L)[0, 6](a2, L), ..., (a2, H)[0,6](a3, L)[0, 6](a2, 
H)}, is determined. The cardinality of |3-C| is 5 × 7 = 35 . 
Through horizontal or vertical support computation, we have 
3-P = � . Therefore, the final output is 1-P ∪ 2-P.

Fig. 5  An example of TPList production

(a) SP ( α = 0 .1, β = 0 .15, γ = 0 .0088, λ = 0 .058) (b) CP ( α = 0 .1, γ = 0 .0055, λ = 0 .037)

Fig. 6  Visualization of Tri-SASPs and rules on Dataset I
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Experiments

In this section, we focus on the problem of temporal associa-
tion analysis, where the scalability of the algorithm and the 
readability of the patterns is the most important. Therefore, 
the following questions are answered by experiments: 

(1) What interesting Tri-SASPs can we obtain from the 
real-world datasets?

(2) What is the difference between the discovered Tri-
SASPs w.r.t. the SP and CP strategies?

(3) How good is the performance of the horizontal and 
vertical algorithms?

Datasets

Table 6 shows the information of the temporal MTS data-
sets. The original AirQuality dataset was downloaded 
from UCI1. CentralAirConditioning is a semi-open-access 
dataset for the Chinese National Contest of Maths Mod-
els2. The last two oilwell maintenance datasets are pro-
vided by the China National Offshore Oil Corporation 
(CNOOC)3.

Interpretability

Question (1) is answered here.
Figures 6 and 7 enhance human cognition about state asso-

ciations by illustrating a number of nodes and directed edges. 
For brevity of visualization, we first adjust the thresholds � 
and � to keep the number of frequent Tri-SASPs with length 2 
in the range of 5 to 15. Although interesting Tri-SASPs with 
length no less than 3 cannot be observed directly, the graph 
still provides some clues. Second, the tri-wildcard gap Δ 
between any two states is set to [0, 6]. Third, there are two  
kinds of states. The ones in the POS region are marked with + ,  
while another one belonging to BND has no tag. Fourth, two  
kinds of edges are introduced: (1) s1

Sup(P)
⟶ s2 denotes that s1Δs2 is 

frequent but r ∶ s1 ⇒ s2 is not confident; and (2) s1
(Sup(P),c(r))

⟹ s2
 

denotes that s1Δs2 is frequent and r ∶ s1 ⇒ s2 is confident. 
Finally, we present only two state transition charts from data-
sets I and IV, namely, AirQuality and ESP-Working-Diagnose.

Figure 6 shows the visualization of the Tri-SASPs and their 
temporal association rules on Dataset I. There are 6 states/
nodes and 5 nodes in Fig. 6a, b, respectively. In Fig. 6a, the 
associations among nodes 1  , 2  , 3  and 4  are stronger than 
that between nodes 5  and 6  . Rules such as 3

(0.0102,0.06)

⟹ 2  
have two interpretations: (1) the probability of pattern 
3 [0, 6] 2  occurring is 0.0102; and (2) if state 2  occurs, 

the probability of state 2  occurring is 0.06. Patterns such as 
1

0.008
⟶ 3  can be interpreted as indicating that the probability 

of pattern 1 [0, 6] 3  occurring is 0.008. In Fig. 6b, node 3  
seems independent of the other nodes because there is no 
pattern or rule among them. However, the hidden temporal 
associations around node 3  can be observed through decreas-
ing � or �.

Table 6  Basic information of the datasets

Dataset Name |T| |A| Area

I AirQuality 9,358 15 Environments
II CentralAirConditioning 88,840 51 Equipment
III ESP-Sanding-Diagnose 3,893 22 Petroleum
IV ESP-Working-Diagnose 33,001 14 Petroleum

(a) SP ( α = 0 .05, β = 0 .091, γ = 0 .012, λ = 0 .14) (b) CP ( α = 0 .05, γ = 0 .02, λ = 0 .25)

Fig. 7  Visualization of Tri-SASPs and rules on Dataset IV

1 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Air+ Quali ty
2 http:// www. tipdm. org/ bdrace/ index. html
3 http:// www. cnooc. com. cn/ en/

http://archive.ics.uci.edu/ml/datasets/Air+Quality
http://www.tipdm.org/bdrace/index.html
http://www.cnooc.com.cn/en/
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Figure 7 shows the visualization of Tri-SASPs and their 
temporal association rules on Dataset IV. There are 9 states/
nodes in Fig. 7a and 11 nodes in Fig. 7b. State 6  is the center 
of both Fig. 7a, b. However, state 6  belongs to POS in the 
SP strategy, while it belongs to BND in the CP strategy. In 
terms of the SP strategy, POS = { 1  , 2  , 3  , 4  , 8  , 9  } and 
BND = { 7  , 10  }. In terms of the CP strategy, POS = { 7  , 
8  , 9  , 10  , 11  } and BND = { 1  , 2  , 3  , 4  , 5  , 6  }. The 

transition probabilities between the same two pairs of states 
are different. In Fig.  7b, Sup( 6 [0, 6] 4 ) = 0.023 , while 
Sup( 4 [0, 6] 6 ) = 0.025 . Interestingly, the supports of the 
symmetrical Tri-SASPs in Fig. 7a are the same. For example, 
Sup( 6 [0, 6] 3 ) = Sup( 3 [0, 6] 6  ) = 0.014, Sup( 6 [0, 6] 1 ) 
= Sup( 1 [0, 6] 6  ) = 0.012, and Sup( 6  [0, 6] 8 ) = Sup( 8 [0, 
6] 6  ) = 0.018. This is because state nodes 1  , 2  , 3  , 4  , 7  , 
8  , 9  , 10  and 6  appear alternately in Dataset IV. It is not 

useful for experts to further distinguish the causalities between 
events. Fortunately, the temporal rules obtained here are very 
informative.

Diversity

Question (2) is answered here.
Tables 7 and 8 show the diversity between the SP and 

CP strategies on Datasets I and IV, respectively. Diversity is 
defined as

In Table 7, it can be observed that (1) the SP strategy 
finds more Tri-SASPs than the CP one; and (2) the diversity 
increases with lower � and � . In Table 7 (a), when � = 0.015 , 
the diversity between the SP and CP is the maximal value, 
194 + 39 = 233 . When � = 0.055 , the diversity between the 
SP and CP is the minimal value, 94 + 9 = 103 . In Table 7 
(b), when � = 0.0017 , the diversity between the SP and CP 
is the maximal value, 130. When � = 0.0025 , the diversity 
between the SP and CP is the minimal value, 100.

Table 8 shows the number of different Tri-SASPs between 
the SP and CP strategies on Dataset IV. With Table 8, it can 
be observed that (1) the CP strategy finds more Tri-SASPs 
than the SP strategy; and (2) the diversity between the SP 
and CP decreases with larger � and � . In Table 8 (a), when 
� = 0.007 , the diversity between the SP and CP is the maxi-
mal value, 1,458. When � = 0.009 , the diversity between the 
SP and CP is the minimal value, 114. In Table 8 (b), when 
� = 0.006 , the diversity between the SP and CP is the maxi-
mal value, 664. When � = 0.0034 , the diversity between the 
SP and CP is the minimal value, 51.

In short, the SP and CP strategies cannot replace each 
other in general. Given an arbitrary MTS, both of them are 
worth trying. Various tri-partition state alphabets specified 
by users can bring many different Tri-SASPs.

|PSP − P
CP| + |PCP − P

SP|.

Table 7  The number of different 
Tri-SASPs between the SP and 
CP strategies on Dataset I

(a) � = 0.08, � = 0.0018

� 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
|PSP − P

CP| 194 184 186 182 171 159 143 114 94

|PCP − P
SP| 39 8 4 1 3 3 4 14 9

(b) � = 0.05, � = 0.08

� 0.0017 0.0018 0.0019 0.002 0.0021 0.0022 0.0023 0.0024 0.0025
|PSP − P

CP| 123 114 81 92 82 76 69 66 66

|PCP − P
SP| 7 14 4 4 1 2 5 4 4

Table 8  The number of different 
Tri-SASPs between the SP and 
CP strategies on Dataset IV

(a) � = 0.006, � = 0.0055

� 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
|PSP − P

CP| 21 21 21 21 21 20 19 16 16

|PCP − P
SP| 1,137 677 731 761 1,043 1,438 374 98 99

(b) � = 0.005, � = 0.01

� 0.006 0.01 0.014 0.018 0.022 0.026 0.03 0.034 0.038
|PSP − P

CP| 21 6 5 5 5 5 4 2 3

|PCP − P
SP| 643 340 217 135 112 96 68 49 65
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Scalability

Question (3) is answered here.
Two sets of experiments are undertaken to investigate 

the runtime with respect to thresholds � and � . Figure 8 
shows the results of the first set of experiments. The 
left Y axis corresponds to the two SP-strategy-based 
techniques, and the right one corresponds to the two 
CP-strategy-based techniques. Figure 8b shows only 
two folding lines for the horizontal techniques. This is 
because the runtimes of the two vertical ones are greater 
than 24 hours. Moreover, the performance of the verti-
cal ones becomes very poor when the TPLists of the 

Tri-SASPs are very large. Otherwise, the vertical tech-
niques will be very efficient; see Fig. 8a, c.

Figure 9 shows the results of the second set of experiments. 
Namely, the runtimes of the threshold and compressed parti-
tion strategies based on the horizontal and vertical techniques 
with respect to � are shown. The left Y axis corresponds to 
the two SP-strategy-based techniques, and the right one cor-
responds to the two CP strategy-based techniques. Similarly, 
the runtime of each technique becomes very long with smaller 
� . In Fig. 9b, the two vertical techniques are also too slow to 
obtain patterns. In Fig. 9c, d, the two CP-strategy-based tech-
niques are much faster than the two SP-strategy-based ones. 
This is because the CP strategy generates much smaller POS 
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and BND regions than the SP one. The value of � does not 
effect the runtime of the SP-strategy-based techniques because 
POS ∪ BND remains unchanged when � is specified.

Conclusion

Given an MTS, we define frequent Tri-SASPs and confident 
temporal association rules to help human experts make better 
decisions. The SP strategy gives more frequent states greater 
importance, while the CP strategy gives more special (longer) 
states greater importance. For an MTS under an approximately 
uniform distribution, the horizontal algorithm is faster than the 

vertical one; otherwise, the vertical algorithm is faster Moreo-
ver, numerous insignificant states containing “Normal (N)” are 
ignored to focus on more interesting Tri-SASPs.

The following research topics deserve further investigation:

• Obtaining frequent Tri-SASPs in a depth-first, parallel, 
incremental, distributed or hybrid way.

• Using a one-off or non-overlapping condition instead of 
a general one.

• Considering fuzzy, uncertain, weighted and utility 
variants of Tri-SASPs.

• Extending Tri-SASPs to sequence databases, which are 
more complex and more widespread in reality.

(a)

(c) (d)

Fig. 9  The runtime of the techniques w.r.t. � . The SP (solid line) corresponds to the Y axis on the left, and the CP (dotted line) corresponds to 
the Y axis on the right
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