
Vol.:(0123456789)1 3

Cognitive Computation
https://doi.org/10.1007/s12559-021-09871-4

Tri‑Partition State Alphabet‑Based Sequential Pattern for Multivariate
Time Series

Zhi‑Heng Zhang1 · Fan Min2 · Gong‑Suo Chen1 · Shao‑Peng Shen1 · Zuo‑Cheng Wen1 · Xiang‑Bing Zhou1

Received: 15 October 2020 / Accepted: 13 April 2021
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021

Abstract
Recently, the advancement of cognitive computing and three-way decisions has enabled in-depth sequential pattern under-
standing through temporal association analysis. The main challenge is to obtain concise patterns that express richer semantics
for multivariate time series (MTS) analysis. In this paper, we propose a tri-partition state alphabet-based sequential pattern
(Tri-SASP) for MTSs. First, a tri-wildcard gap inserted between each pair of adjacent states enhances the flexibility of the
method. Second, a given set of states is partitioned into positive (POS), negative (NEG) and boundary (BND) regions. The
states in POS can only be used to construct a Tri-SASP, the states in NEG can only be matched by a tri-wildcard gap, and
the states in BND can be used in both ways. Finally, horizontal and vertical algorithms are proposed to obtain frequent Tri-
SASPs in a breadth-first manner. The experimental results on four real-world datasets show that (1) the discovered Tri-SASPs
and temporal rules can enrich human cognition; (2) the two tri-partition strategies can bring us very meaningful and varied
Tri-SASPs; and (3) the two algorithms are effective and scalable.

Keywords Cognitive computation · MTS · Sequential pattern discovery · Three-way decisions

Introduction

Three-way decisions (3WDs) [1, 2], originating from rough
set theory [3], have become a focus of cognitive computation
[4, 5]. Through the idea of “thinking in threes” [6], numer-
ous novel machine learning theories such as granular com-
puting [7], concept analysis [8], fuzzy sets [9], interval sets
[10] and cost-sensitive learning [11, 12], as well as appli-
cations such as recommendation systems [13, 14], active
learning [15], classification [16], clustering [17], pattern dis-
covery [18], target recognition [19], attribute reduction [20]
and email filtering [21], have been extensively studied. The
discovery of novel associations and patterns [22] to promote
brain-like computer cognition and decisions brings opportu-
nities and challenges for cognitive computation [23].

Figure 1 shows some existing works on frequent sequen-
tial pattern discovery initiated by Agrawal and Srikant [24].
Recently, this direction has attracted much attention [25,
26]. Numerous studies of this issue focus on sequence data-
bases [27]. GSP [28] was improved from AprioriAll [24],
and both of them were inspired by frequent itemset mining
[29]. To avoid the drawbacks (e.g., too many candidates)
of the horizontal GSP algorithm, Spade [30], Spam [31],
Lapin [32] and PrefixSpam [33] were proposed on the basis
of vertical database representation [34]. To obtain concise
results, closed [35], maximal [36] and generator frequent
sequential patterns [37] were designed. To extract richer pat-
terns, weighted [38], high-utility [39], uncertain [40] and
fuzzy [41] methods were defined.

For pattern discovery on MTSs, there are along-first DTA
[42], improved from TARD [43] and across-first STAP [44].
As important results of temporal association analysis [45],
the rules generated by STAP are more explainable than those
generated by DTA. This is because the components of DTA
are subsequence clusters, where subsequences are similar
but different. The components of STAP are states that are
unambiguous at each time stamp. As the foundation of fre-
quency computing, matching conditions of patterns such
as non-overlapping [46], one-off [47] and general [48] are

 * Fan Min
 minfan@swpu.edu.cn

1 School of Information and Engineering, Sichuan Tourism
University, No. 459 Hongling Road, Longquanyi District,
Chengdu City, Sichuan Province 610100, China

2 School of Computer Science, Southwest Petroleum
University, No. 8 Xindu Avenue, Xindu District,
Chengdu City, Sichuan Province 610500, China

http://orcid.org/0000-0002-3290-1036
http://crossmark.crossref.org/dialog/?doi=10.1007/s12559-021-09871-4&domain=pdf

 Cognitive Computation

1 3

popular strategies. Naturally, there is still a need to enrich
the semantics of the pattern further.

In this paper, we propose a new type called a tri-partition
state alphabet-based sequential pattern (Tri-SASP) to enrich
the pattern type on MTSs. A state is defined as a set of
attribute-value pairs. For example, the set {(Temperature,
High), (Humidity, Medium)}, also denoted as (Tempera-
ture, High) ∧ (Humidity, Medium), is a state of weather.
Through inserting a tri-wildcard gap Δ between each pair
of adjacent states, the flexibility can be greatly enhanced.
Tri-SASP generalizes a tri-pattern [18], which is based on
univariate sequences in MTSs. It generalizes STAP through
a tri-partition state alphabet with two reasonable strategies.
A Tri-SASP is frequent in an MTS if the occurrences of
each state exceed a user-specified threshold � and the occur-
rences of the Tri-SASP exceed another threshold � . There-
fore, the problem is to discover all frequent Tri-SASPs from
a given MTS and a tri-partition state alphabet Σ.

First, inspired by three-way decision theory [2], a given
set of states can be divided into three disjoint regions,
namely, the POS, BND and NEG ones, namely, we have
that (1) Σ = POS ∪ BND ∪ NEG and (2) POS ∩ BND = POS
∩ NEG = BND ∩ NEG = � . Here, we discuss two strate-
gies, called support-partition (SP) and compression-partition
(CP). For the SP strategy, two thresholds � and � (� ≤ �)
are used to obtain ΣSP . If the frequency of a state is not less
than � , it belongs to POS. If the frequency is less than � , it
belongs to NEG. Otherwise, it belongs to BND. In other
words, the set of frequent states is partitioned into POS and
BND, while the set of infrequent ones is NEG. The main
idea of the SP strategy is to measure the state significance by
its frequency. For the CP strategy, only � is used to generate

ΣCP through defining frequent closed and maximal states.
POS is the set of frequent maximal states. BND is the differ-
ence set of frequent closed states and maximal states. NEG
is the difference set of all frequent states and closed states.
We have ΣCP ⊆ ΣSP , and the NEG of ΣSP is not stored. The
main idea of the CP strategy is that longer (or more special)
states are more significant.

Second, a Tri-SASP is constructed with the given
Σ ∈ {ΣSP,ΣCP} and tri-wildcard gap. Given the lower bound
G and upper bound G (0 ≤ G ≤ G) , namely, the minimal
and maximal gap constraints, the tri-wildcard gap can be
denoted as Δ = [G,G] . The number of time stamps between
each pair of adjacent states must be no less than G and no
more than G . Consequently, the matching conditions can
be defined as follows: (1) if a state comes from POS, it can
be a component of the Tri-SASP but cannot be matched by
the tri-wildcard gap; (2) if a state belongs to NEG, it can be
matched by the tri-wildcard gap but cannot be a component
of the Tri-SASP; and (3) if a state is contained in BND, it
can either be a component of the pattern or matched by the
tri-wildcard gap. In other words, we have (1) all components
of a Tri-SASP must be states from POS ∪ BND; and (2) the
states of POS never appear in these time stamps between
each pair of adjacent states.

Third, two algorithms, horizontal and vertical algorithms,
are proposed to obtain frequent Tri-SASPs. The general
matching condition is introduced here because it maintains
the complete occurrences of Tri-SASPs. With the a priori/
down-closure property, namely, that if a Tri-SASP is infre-
quent, all of its super-patterns must be infrequent, the two
proposed algorithms are able to obtain frequent patterns
rapidly and exactly. The horizontal algorithm computes the

Fig. 1 Techniques of frequent sequential pattern discovery (Tri-SASP is our contribution)

Cognitive Computation

1 3

support of a Tri-SASP by re-scanning the MTS. The vertical
algorithm obtains this support by computing the interaction
of two TPLists belonging to two sub-patterns. The TPList
of a Tri-SASP is a set of tuples that firmly maintain the
occurrences and positions of the last state of the Tri-SASP.

Experiments were carried out on four real-world datasets,
including air quality, central air-conditioning and oil elec-
tric submersible pump (ESP) sanding diagnosis and working
diagnosis. The results show that: (1) contained in the state
transition figure, both frequent Tri-SASPs and confident
temporal association rules can provide new patterns and
associations for expert decisions; (2) the SP and CP strate-
gies bring us new knowledge about which states are more
frequent and special, respectively; (3) Tri-SASPs obtained
with the above two tri-partition strategies are greatly differ-
ent; and (4) the horizontal and vertical algorithms are better
for uniform and non-uniform datasets, respectively.

The contributions of this paper include the following:

• a new type of sequential pattern with a tri-partition state
alphabet;

• two tri-partition strategies for a given state set;
• the strategy of pattern construction as well as the condi-

tion of tri-wildcard gap matching; and
• horizontal and vertical techniques for Tri-SASP support

computing.

The rest of the paper is organized as follows: "Related
Work" reviews previous works, including three-way decision
and pattern discovery. "Tri-SASP and Temporal Association
Analysis" proposes the concepts of the new Tri-SASP and
temporal association rules. "Methods" presents the design
of horizontal and vertical algorithms for discovering fre-
quent Tri-SASPs. "Experiments" discusses the experimental
results on scalability, readability and diversity. Finally, con-
cluding remarks are presented in "Conclusion".

Related Work

In this section, we first review the theory and applications
of 3WDs. Second, works regarding sequence pattern dis-
covery on univariate, multivariate and sequence databases
are presented.

Three‑Way Decisions

In rough set theory [3], using an equivalence relation, the
universe is partitioned into three disjoint regions. The posi-
tive, negative and boundary regions are the sets of objects
that are definitely, definitely not and possibly members of
the target set, respectively. However, this strict division often
hinders its application in practice. Probabilistic rough set

models such as decision-theoretical rough sets (DTRS) [49]
and variable-precision rough sets [50] were introduced to
address this issue. Among them, DTRS is a sound theory
based on Bayesian decision making. The required param-
eters are systematically determined based on the costs of
various decisions [2, 49].

The 3WDs have substantially advanced by becoming a
divide-and-conquer methodology [2] rather than a concrete
technique. One task of this methodology is to construct a
tri-section or tri-partition of the universal set. The other task
is to act upon objects in one or more regions by developing
appropriate strategies. 3WDs are a class of effective methods
and heuristics commonly used in human problem solving
and information processing.

Recently, various theories have been inspired by the
3WD. Three-way formal concept analysis [51] is constructed
using the three-way operators and their inverses. Three-way
cognition computing [5, 7] focuses on concept learning
via multi-granularity from the viewpoint of cognition. The
three-way fuzzy sets method [9] constructs a three-way,
three-valued or three-region approximation with a pair of
thresholds on the fuzzy membership function. Three-way
decision space [52] unifies decision measurement, decision
conditions and evaluation functions. Sequential three-way
decisions [13] is an iteration process that eventually leads
to two-way decisions. Some generalized three-way decision
models [53–55] are quite popular.

Additionally, there are abundant applications. Three-way
recommender systems have been applied in both classifica-
tion and regression [14] of user ratings. Three-way active
learning [56] finds a tradeoff between the teacher cost of
acquiring class labels and the misclassification cost. Three-
way clustering [17] introduces a new strategy for overlap-
ping clustering based on the DTRS model. Tri-partition
neighborhood covering reduction [16, 57, 58] facilitates
robust classification, and three-way spam filtering [21]
reduces the email misclassification costs. Three-way face
recognition [19] develops a sequential strategy to address
the imbalanced misclassification cost and the problem of
insufficient high-quality facial image information. Finally,
an interesting type of pattern called a tri-pattern, which is
based on the tri-partition alphabet, has been proposed for
univariate time series, text and biological data analysis.

Sequence Pattern Discovery

Figure 2 shows the relationships among univariate
sequences, multivariate sequences and sequence databases.
For transaction data, the original association analysis prob-
lems and methods [29] were proposed to find interesting
market patterns, for example, in beer and diaper sales at
WalMart. For sequence databases, namely, transaction
data with additional temporal information, the patterns in

 Cognitive Computation

1 3

the interactions of two systems at different times are sig-
nificant. For example, different customers may buy various
commodities over a period of time. Based on this type of
dataset, sequential patterns such as {milk, bread} → {beer,
diapers, toothbrush} → {towel} can be discovered. Because
each customer has his own commodity sequence, the support
of a given sequential pattern is defined as the fraction whose
denominator and numerator are the number of all commod-
ity sequences and those containing the pattern, respectively
[24].

To handle the problem of frequent sequential pattern
discovery on sequence databases, many works, such as
AprioriAll [24] and GSP [28], were successively proposed
by Agrawal and Srikant. The contributions of GSP com-
pared to those of AprioriAll are the extension of time con-
straints, a sliding window and a taxonomy hierarchy tech-
nique. According to the search strategy, existing algorithms
can be divided into breadth-first and depth-first algorithms.
Breadth-first algorithms such as GSP generate all candi-
date k-sequences by using (k − 1)-sequences. Depth-first
algorithms such as Spade [30], Lapin [32], Spam [31] and
PrefixSpam [33] were designed to recursively extend each
sequence containing single items. For example, let the set
of all items be {A, B, C}; a breadth-first algorithm will first
consider the 1-sequences {A}, {B} and {C}. Then, the algo-
rithm will consider the 2-sequences {A} → {A}, {A} →
{B}, {A} → {C}, {A, B}, {A, C} and so on. A depth-first
algorithm will explore potential sequential patterns follow-
ing this order: {A}, {A, B}, {A, B, C}, {A} → {A}, {A} →
{A, B} and so on.

According to the database structure, existing algorithms
can also be divided into horizontal and vertical algorithms.
The horizontal algorithms such as GSP scan the whole
sequence database to calculate the support of candidate
patterns. Another problem for GSP is that it may generate
patterns that do not exist in the database. The third is that
at every moment it must retain all frequent patterns. The
vertical algorithms such as Spade utilize a vertical database
representation indicating the itemsets in which each item
appears in the sequence database. More details and exam-
ples can be found in [27]. A vertical representation can be
regarded as a kind of compression of a horizontal one. The
performance of algorithms based on vertical representations
is better with a more sparse sequence database, and vice
versa.

For MTSs, sequential patterns can be classified into
along-first and across-first patterns. In terms of along-
first methods such as DTA [42] and TARD [43], various
sequence clusters are obtained by frequent subsequences
mining and clustering successively within each univariate
sequence. Then, all subsequence clusters are used to con-
struct the expected pattern and those that are frequent will be
found. For the across-first STAP, different frequent states are
discovered. Each state contains at least one variable.

Then, all frequent states, treated as 1-sequential pat-
terns, are used to construct longer patterns. In Table 1, one
example of an along-first sequential pattern is { (a1, LL),
(a1, LLN), (a1 , LNN)} → { (a3 , NHH), (a3 , HHNL)} → { (a2,
NLLN), (a2, LLNN)}. One example of an across-first pattern
is { (a1, L), (a2, H)} → { (a1, N), (a2, L), (a3, L)} → { (a3, H)}.
Compared to patterns from sequence databases, those from
MTSs are naturally different in two respects:

• Pattern length. Here, the length of a sequential pattern
is the number of states, irrespective of the length of the
states. For a sequence database, A sequence (A1 , A 2 , ...,

Fig. 2 The relationships among four types of data

Table 1 An example of a symbolic MTS

T (4/2019) A
Temperature (a1) PM2.5 (a2) CO2 (a3)

20 (t1) L H N
21 (t2) L N L
22 (t3) N L L
23 (t4) N L N
24 (t5) H N H
25 (t6) H N H
26 (t7) L L N
27 (t8) N H L
28 (t9) H N L
29 (t10) L H N

Cognitive Computation

1 3

A n) is called a k-sequence if it contains k items, or, in
other words, if k = |A1 | + |A2 | + ...+ |An | . The lengths
of patterns ({A, B}) and ({A}, {B}) are 1 and 2 in our
work, respectively. However, their lengths are both 2 in
works based on sequence databases.

• Pattern support. For sequential patterns in sequence data-
bases, the occurrences are counted according to the number
of matched transactions. For the ones in MTSs, the occur-
rences are counted according to the number of matched posi-
tion sequences. The a priori property is not available for this
number. For example, the number of occurrences of B[0, 2]
A is 3, namely, (2, 3), (2, 5) and (4, 5), which is larger than
that of (B), namely, (2) and (4). Fortunately, there are three
matching conditions, general, one-off and non-overlapping
sequences, proposed below to ensure this property.

In terms of univariate sequences, the matching condi-
tion is the foundation of pattern discovery. There are three
kinds of pattern matching conditions, i.e., non-overlapping
[46], one-off [47] and general [48]. For example, given a
univariate sequence S = A1B2A3B4A5 of length 5, a peri-
odic wildcard gap [0, 2] and a pattern P = A[0, 2]B[0, 2]A,
the occurrences of this pattern are (1, 2, 3), (1, 2, 5), (1, 4,
5) and (3, 4, 5). The number of occurrences counted under
the general condition is 4. Because each of the characters
in the univariate sequence can be used only once under the
one-off condition, there is only one occurrence, such as (1,
2, 3) for P. Under the non-overlapping condition, the num-
ber of occurrences of P is 2, namely, (1, 2, 3) and (3, 4, 5).
In a word, the non-overlapping condition is less restrictive
than the one-off condition, while it is more specific than the
general one for pattern mining.

Tri‑SASP and Temporal Association Analysis

In this section, we first discuss the formal description of an
MTS. Second, two strategies for the state tri-partition alphabet
are proposed. Third, the Tri-SASP is defined by the given tri-
partition state alphabet. Fourth, two algorithms of frequent
Tri-SASP discovery are proposed. Finally, some running
examples of algorithms are presented to improve readability.

Data Model

With the development of sensor technology, the collection of
time series data becomes convenient and reliable. In many
applications, we are initially interested in the following data
model:

Definition 1 An MTS is a quadruple

where T = {t1, t2,… , tn} is a finite set of time points,
A = {a1, a2,… , am} is a finite set of variables, Va is the set
of value ranges of variable a, and f ∶ T × A → V is the map-
ping function.

If the value ranges of all attributes are sym-
bolic, we call it a symbolic MTS. We further assume
that ti+1 − ti = ti − ti−1 (2 ≤ i ≤ n − 1). For brevity,
∀i ∈ [1, n], j ∈ [1,m], f (ti, aj) = fi,j indicates the value of aj
at ti . Moreover, let fi,∗ = {(a1, fi,1), (a2, fi,2),… , (am, fi,m)}.

Example 1 Table 1 shows an example of an MTS. Here, T =
{t1, … , t10} = {20/4/2019, ..., 29/4/2019} indicates that there
are daily data for 10 consecutive days. Each row represents
a time point, and each column represents a kind of sensor.
A = {a1, a2, a3} is the set of sensors, where a1, a2 , and a3 rep-
resent temperature, PM2.5 and CO2 , respectively. The value
ranges are Va1

= Va2
= Va3

 = {H, L, N}, where H, N and L
indicate high, normal and low, respectively. f (t1, a2) = f1,2
= H indicates that the value of PM2.5 on 20/4/2019 is high.
Moreover, f1,∗ = {(a1, L), (a2, H), (a3, N)}.

Strategies for the Tri‑Partition State Alphabet

First, the definition of a state is fundamental for our three-
way state alphabet. Generally, one can define the system
state with some or all of the variables and their values in
an MTS. A state is a set of attribute-value pairs and has the
following two forms:

Definition 2 Given an MTS S = (T, A, V = ∪a∈AVa , f), a state
with the set form is

 while a state with the logic form is

subject to

For brevity, the set of all states is denoted as

When s ⊇ s′ , we call s a sub-state of s′ . Accordingly, s′
is called a super-state of s. A state is a sub-state (and super-
state) of itself.

(1)S = (T ,A,V = ∪a∈AVa, f),

(2)s = {(a, va)|a ∈ A� ⊆ A, va ∈ Va ⊆ V},

(3)s = ∧a∈A�⊆A,va∈Va
(a, va),

∀1 ≤ i ≠ j ≤ |s|, ai ≠ aj.

L = 2{(a,va)|a∈⊆A,va∈Va⊆V}.

 Cognitive Computation

1 3

Example 2 State s8 = {(a1, L) , (a2, H)} or equivalently (a1, L)
∧ (a2, H) is a valid state, but {(a1, L) , (a1, H)} is not. When
we know s8 ⊇ s1 = {(a1, L)} , we have that s8 is a sub-state
of s1 . Moreover, we also say that s8 is more specific than s1
while s1 is more general than s8.

We are usually interested in whether or not a state matches
an MTS at a time point. Therefore, we propose the concept
of state matching as follows: Let S = (T ,A,V = ∪a∈AVa, f)
be an MTS. State s = {(a, va)|a ∈ A� ⊆ A, va ∈ Va} matches
S at t ∈ T iff s ⊆ ft,∗ , namely, ∀ a ∈ A� , f (t, a) = va . We fur-
ther denote the state matching as a function

Hence, its support is given by

Sup(s, S) can be abbreviated as Sup(s) when S is specified
in context. For brevity, given a support threshold � , the set
of frequent states is

Second, we propose two types of tri-partition state alpha-
bet Σ , corresponding to two strategies. One is called support
partition (SP), and the other is called compression parti-
tion (CP). Practically, Σ is specified by the user. No matter
what kind of Σ we obtain, the following assumptions must
be established:

• POS ∪ BND ∪ NEG = Σ.
• POS ∩ BND = � , POS ∩ NEG = � and BND ∩ NEG = �.

Let � and � be two support thresholds. Given an MTS
S and s ∈ Σ , the SP strategy is

In this case, POS ∪ BND ∪ NEG = Lgen ∪ NEG = L .
The states in NEG are too numerous to be presented. All
states containing N, e.g., (a1, L) ∧ (a2, N) , are ignored at
first. This is because N indicates normal, which contains
little or no information. Once we remove the value N,
the number of candidate states will greatly decrease.
In other words, all states containing N must belong to
NEG.

(4)m(S, t, s) =

{
1, if s matches S at t;

0, otherwise.

(5)Sup(s, S) =

∑
t∈T m(S, t, s)

�T� .

L
gen = {s ∈ L|Sup(s) ≥ �}.

(6)

⎧⎪⎨⎪⎩

s ∈ POS, if Sup(s) ≥ 𝛽;

s ∈ BND, if 𝛼 ≤ Sup(s) < 𝛽;

s ∈ NEG, otherwise.

Example 3 In accordance with Tables 1 and 2 shows an
example of the SP strategy. State s9 = (a1, L) ∧ (a3, L)
belongs to NEG, because Sup(s9) =

1

10
< 𝛼 . The sig-

nificance levels of (a1, L) ∧ (a2, N) ∧ (a3, L) and s9 are
almost equivalent. When we do not consider N for each
variable, the number of all states is only 26, where s1 ,
s2 belong to POS, s3 to s8 belong to BND and the rest
belong to NEG. In contrast, this number will be 63 when
N is preserved.

The CP strategy is formally presented as follows: Initially,
the set of frequent maximal states is

and the set of frequent closed states is

Consequently, the CP strategy is

In this situation, the states in NEG are frequent but
redundant. The union of the three regions is Lgen ⊆ L.

Example 4 According to Tables 1 and 3 shows the state
tri-partition results of the CP strategy. Similarly, all states
containing N are ignored for brevity. In comparison with
Table 2, s6 , belonging to BND, instead belongs to NEG. s1 ,
belonging to POS, instead belongs to BND. s5 , s7 and s8 ,
belonging to BND, instead belong to POS.

Finally, Table 4 shows a comparison of the SP and
CP strategies. Given a set of states, such as L and Lgen ,
the SP strategy needs two thresholds � and � , where
� is additionally introduced. In contrast, the CP strat-
egy needs only � , which maintains the simplicity of the
inputs.

L
max = {s ∈ L

gen|∄s� ∈ L
gen, s� ⊇ s},

L
clo = {s ∈ L

gen|∄s� ∈ L
gen, s� ⊇ s, Sup(s�) = Sup(s)}.

(7)

⎧⎪⎨⎪⎩

POS = L
max;

BND = L
clo − L

max;

NEG = L
gen − L

clo.

Table 2 An example of the SP strategy (Σ = L , � = 0.2, � = 0.4)

POS BND NEG

s1 = (a1, L)(0.4) s3 = (a1, H)(0.3) The infrequent
s2 = (a3, L)(0.4) s4 = (a2, H)(0.3)

s5 = (a2, L)(0.3)

s6 = (a3, H)(0.2)

s7 = (a1, H) ∧ (a3, H)(0.2)

s8 = (a1, L) ∧ (a2, H)(0.2)

Cognitive Computation

1 3

Pattern and Rule

First, in the previous work [44], ∀s ∈ L
gen is a component

of STAP, while in our work, the components of Tri-SASP
come from the POS and BND of the three-way state alpha-
bet Σ.

Definition 3 Given a three-way state alphabet Σ = POS∪

BND ∪ NEG and a tri-wildcard gap Δ = [G,G] , 0 ≤ G ≤ G ,
a Tri-SASP is

where k is the length of P; ∀i ∈ [1, k], si ∈ POS ∪ BND; G
and G are called the minimal and maximal gap constraints
of P, respectively; and no states of POS may occur in the
interval Δ.

Example 5 With Table 2, pattern s2Δs3Δs6 is a Tri-SASP.
With Table 3, this pattern is not a Tri-SASP, because the
state s6 belongs to NEG region under the CP strategy. In
other words, all patterns containing state s6 are not Tri-
SASPs using Table 3.

Figure 3 shows the tri-partition and actions for a given state
set. States in POS can only be used to construct a Tri-SASP.
States in NEG can only be matched by a tri-wildcard gap.
States in BND can be used to either construct a Tri-SASP or
be matched by a tri-wildcard gap.

Second, we present the pattern matching rules for Tri-
SASPs. Naturally, a Tri-SASP P = s1Δs2 …Δsk always occurs
in an MTS S with a position sequence

where ∀j ∈ [1, k − 1], i1 ∈ [1, |T|] and 0 ≤ G ≤ ij+1 − ij−

−1 ≤ G . Hence, we can present the formal description of the
matching rule as follows:

(8)P = s1Δs2 …Δsk = s1[G,G]s2 …[G,G]sk,

I = i1i2 … ik,

Given S = (T ,A,V , f) , Σ = POS ∪ BND ∪ NEG,
Δ = [G,G] , P = s1Δs2 … sk and I = i1i2 … ik as a position
sequence, the matching of P on S at I is a Boolean function

where sj ∈ POS ∪ BND, ∀j ∈ [1, k − 1], q ∈ [ij, ij+1] and ∀s ∈
POS, s ⊈ ftq,∗ or m(tq, s) = 0.

Example 6 With Tables 1 and 2, let Δ = [0, 6] , and let
P = s2[0, 6]s8 = (a3, L)[0, 6](a1, L) ∧ (a2, H) be a Tri-SASP.
The set of positions matching (a3, L) is {t2 , t3 , t8 , t9} . The set
matching (a1, L) ∧ (a2, H) is {t1, t10} . Therefore, the candi-
date position sequences matching P are t3t10 , t8t10 and t9t10 .
The position sequence t2t10 does not match P because the
diversity between positions t2 and t10 exceeds Δ = [0, 6] , i.e.,
10 − 2 − 1 = 7 ∉ [0, 6] . The states of POS are s1 = (a1, L)
and s2 = (a3, L) , whose matching position sets are {t1 , t2 , t7 ,
t10} and {t2 , t3 , t8 , t9} , respectively. Because positions t2 , t7
and t8 occur between t3 and t10 , position sequence t3t10 does
not match P. The only correct position sequence matching P
is t9t10 . Similarly, let P�

= s8[0, 6]s2 ; the candidate position
sequences matching P′ are t1t2 , t1t3 and t1t8 , and the correct
one is t1t2.

Additionally, in the most ideal case, there are G − G + 1
types of ij+1 for each ij . Moreover, there are |T| total time
points in MTS S. Hence, the set of total position sequences
of P in S is denoted as I , and its cardinality is

(9)m(S,P, I) =

{
1, if ∀1 ≤ j ≤ k, sj matches S at tij ;

0, otherwise,

Table 3 An example of the CP strategy (Σ = L
gen , � = 0.2)

POS BND NEG

s5 = (a2, L)(0.3) s3 = (a1, H)(0.3) s6 = (a3, H)(0.2)

s2 = (a3, L)(0.4) s1 = (a1, L)(0.4)

s7 = (a1, H) ∧ (a3, H)(0.2) s4 = (a2, H)(0.3)

s8 = (a1, L) ∧ (a2, H)(0.2)

Table 4 Comparison of the SP and CP strategies

Name Strategy Inputs POS ∪ BND ∪ NEG

SP Eq. (6) �, � L (POS ∪ BND = L
gen)

CP Eq. (7) � L
gen

Fig. 3 Tri-partition and actions of the state alphabet

 Cognitive Computation

1 3

Example 7 With Tables 1 and 2, let Δ = [0, 6] and let there
be a Tri-SASP P = s2[0, 6]s8 of length 2; the cardinality of
its total position sequences is 10 × (6 − 0 + 1)2−1 = 70.

Consequently, we find that the support of Tri-SASP P is

Example 8 With Tables 1 and 2, let P = s2[0, 6]s8 , IP =
{t9t10} , |IP| = 1 ; hence, the support of P is 1

70
.

Then, let � ∈ [0, 1] be the threshold specified by users; the
set of frequent Tri-SASPs is

Third, we present the pattern growth operations of Tri-
SASP. For this purpose, the definitions of sub-patterns and
super-patterns are necessary.

Definition 4 Given two Tri-SASPs P1 = s1Δs2 … sm and
P2 = s�

1
Δs�

2
… s�

n
 , m ≤ n , P1 is called a sub-pattern of P2 iff

where ∀j ∈ [1,m − 1], ij+1 = ij + 1 . For brevity, this relation-
ship is denoted as P1 ⊑ P2.

Example 9 With Tables 1 and 2, let P1 = s1Δ s2Δ s3Δs4 ,
P2 = s3Δs4 , and P3 = s7Δs8 . We have P2 ⊑ P1 and P2 ⊑ P3 .
For the latter, this is because s3 ⊆ s7 and s4 ⊆ s8.

In contrast, given a Tri-SASP P = s1Δs2Δ…Δsk of
length k, the number of its sub-patterns is

Example 10 With Tables 1 and 2, let P = s1Δs2Δs3 = (a1,
L)∧(a2, H)∧(a3, N)Δ(a1, N)∧(a3, L)Δ(a2, N)∧(a3, H).
The number of all sub-patterns of P is (23 − 1 + 22 − 1

|I| = |T| × (G − G + 1)k−1.

(10)Sup(S,P) =
|IP = {I ∈ I|m(S,P, I) = 1}|

|I| .

P = {P|Sup(S,P) ≥ �}.

(11)∃ a sequence i1i2 … im, s.t. ∀j ∈ [1,m], sj ⊆ s�
ij
,

(

k∑
l=1

k−l+1∑
i=1

l∏
j=1

(2|si+j−1| − 1)) − 1.

+22 − 1) + ((23 − 1) × (22 − 1) + (22 − 1) × (22 − 1)) + (23−

1) × (22 − 1) × (22 − 1) − 1 = 13 + (21 + 9) + 42 − 1 = 84.

Next, we can present the rule of the pattern growth opera-
tion as follows:

Definition 5 The pattern growth operation between two Tri-
SASPs P1 = s1Δs2 … sm and P2 = s�

1
Δs�

2
… s�

n
 is

This growth operation is subject to

(1) P1 ⊗ P2 ≠ P2 ⊗ P1;
(2) P1 ⊗ P2 ⊗ P3 = P1 ⊗ (P2 ⊗ P3);
(3) if P3 = P1 ⊗ P2 , P3 is called a Tri-SASP, P1,P2 ⊑ P3 ;

and
(4) if P and P

′

 are two sets of Tri-SASPs, then

Example 11 With Tables 1 and 2, let P1 = s2 , P2 = s3 , P3 = s4
and P4 = s3Δs4 . First, P1 ⊗ P2 = s2Δs3 ≠ s3Δs2 = P2 ⊗ P1 .
Second, P1 ⊗ P2 ⊗ P3 = s2Δs3Δs4 = P1 ⊗ (P2 ⊗ P3). Third,
P4 = s3Δs4 = P2 ⊗ P3 , and with Definition 4, we know
P2,P3 ⊑ P4 . Specifically, the result of s1Δs2 ⊗ s2Δs3 is
s1Δs2Δs2Δs3 instead of s1Δs2Δs3 . The latter can be con-
structed by s1Δs2 ⊗ s3 , s1 ⊗ s2Δs3 , or s1 ⊗ s2 ⊗ s3.

Table 5 shows the comparisons among the Tri-SASP,
STAP, tri-pattern and weak-wildcard pattern. There are
five aspects of these patterns, as follows:

• Partition strategy. Except for STAP, whose alphabet is
not partitioned, all of the patterns introduce a partition
strategy. Tri-SASPs and tri-patterns are based on a tri-
partition alphabet. Weak-wildcard patterns are based on
a binary partition alphabet.

• Alphabet. The components of the Tri-SASP and STAP
are called states. However, the state alphabet is tri-
partitioned into POS, BND and NEG regions with user-
specified strategies. More details can be found in Table 4.
For the tri-pattern, there are strong, medium and weak ele-
ments, while for the weak-wildcard pattern, we have only
strong and weak ones. A tri-pattern is a generalization

(12)P1 ⊗ P2 = s1Δs2 … smΔs
�
1
Δs�

2
… s�

n
.

P⊗ P
�

= {P⊗ P
� |P ∈ P,P

�

∈ P
�

}.

Table 5 Comparisons among Tri-SASPs and existing patterns

Name Partition strategy Alphabet (Σ) Component Gap matching Data model

Tri-SASP Tri-partition {POS, BND, NEG} POS ∪ BND BND ∪ NEG Multivariate (|A| > 1)
STAP None L

gen
L
gen

L
gen Multivariate (|A| > 1)

Tri-pattern Tri-partition {POS, BND, NEG} POS ∪ BND BND ∪ NEG Univariate (|A| = 1)
Weak-wildcard pattern [59] Binary partition {POS, NEG} POS NEG Univariate (|A| = 1)

Cognitive Computation

1 3

of the weak-wildcard pattern, while a Tri-SASP is also a
generalization of the tri-pattern obtained by extending a
single attribute to multiple attributes.

• Component construction. With a given alphabet, differ-
ent sequential patterns have various construction strate-
gies. For the Tri-SASP, the components come from POS
∪ BND. For STAP, its components belong to Lgen , which
is the set of frequent states. For a tri-pattern, its compo-
nents also come from POS ∪ BND. For a weak-wildcard
pattern, the components belong only to POS.

• Gap matching condition. These four sequential patterns
are all based on the general one. The differences are that
(1) the Tri-SASP, tri-pattern and weak-wildcard pattern
do not permit the elements of POS to occur in the wild-
card gap between each pair of adjacent components; (2)
the wildcard gaps of the Tri-SASP and tri-pattern allow
the elements of BND ∪ NEG to occur in itself; (3) the
wildcard gap of STAP allows all frequent states to occur
in it; and (4) the wildcard gap of the weak-wildcard pat-
tern permits only the elements of NEG to occur.

• Data model. The Tri-SASP and STAP are obtained for
an MTS, whose number of attributes is larger than 1. The
Tri-pattern and weak-wildcard pattern are discovered in a
univariate time series, whose attribute number is merely 1.

Finally, a new type of temporal association rule can be
obtained with our Tri-SASP.

Definition 6 Given a pattern P = s1Δs2 … sk and a dividing
position index i ∈ [2, k] , let P[∗,i) = s1Δ s2 … si−1 and P[i,∗]
= siΔ si+1 … sk . The type of rule is

where
Δ

⟹ can be abbreviated as ⟹ when Δ is specified.
The confidence of r is

Example 12 With Tables 1 and 2, letting P = s2[0, 6]s8 , we
find that IP = 1 and Sup(P) = 1

70
 . There is only one rule,

r ∶ s2 ⇒ s8 , that we can obtain. Hence, the confidence of r is

When we obtain Sup(P) = 1

70
 , we can explain it as “the

probability of P happening is 1
70

 .” When we obtain c(r) = 1

28
 ,

we can explain it as “if state s1 happens, the probability of
state s8 happening within a 0 to 6 time delay is 1

28
.”

(13)r ∶ P[∗,i)

Δ

⟹P[i,∗],

(14)c(r) =
Sup(P[.,i) ⊗ P[i,∗])

Sup(P[∗,i))
=

|IP|
|IP[∗,i)

| × |Δ|k−i+1 .

c(r) =
|IP|

|Is2 | × (6 − 0 + 1)2−2+1
=

1

4 × 7
=

1

28
≠

1

70
.

Due to the temporal property of MTSs, a Tri-SASP P
of length k can generate k − 1 rules at most. There is a
confidence threshold � for r such that if the confidence of
r is no less than � , we say that r is a confident rule. Con-
sequently, the set of all confident rules can be formally
described as

Generally, a rule r ∶ P1

Δ

⟹P2 is read as “if sequential pat-
tern P1 happens, then the probability of P2 happening within
a delay of G to G is c(r)”. When n = 2 , this rule can be read
as “if state s1 happens, then the probability of s2 happening
within a delay of G to G is c(r).” Compared to classical asso-
ciation rules in transaction databases, our Tri-SASP rules
have three major differences:

• There is a time delay Δ = [G,G] between the anterior and
posterior parts.

• Both the anterior and posterior parts of the rule are Tri-
SASPs.

• Each state of a Tri-SASP belongs to POS or BND.

Problem Statement

Problem 1 Frequent Tri-SASP discovery.
Input: S = (T ,A,V , f) , Δ = [G,G] , Σ = POS ∪ BND ∪

NEG, � and �.
Output: P = {P|Sup(s ∈ P, S) ≥ �, Sup(P, S) ≥ �}.
Σ = POS ∪ BND ∪ NEG can be obtained through the

process of frequent state mining [29] and tri-partitions. In
the worst situation (� = 0), the number of all possible fre-
quent states is

Given a Tri-SASP P = s1Δs2 … sk , for each j ∈ [1, k] we have
up to M types of state for sj . Hence, there are Mk types of
P in total. Therefore, the time complexity of obtaining all P
with length k is |I| ×M

k . Therefore, the time complexity of
finding all possible P with lengths ranging from 1 to |T| = n is

This equation shows a high time complexity, so an
important proposition is made to greatly reduce the search
space.

Proposition 1 If two Tri-SASPs are subject to P ⊑ P′,

R = {r|c(r) ≥ �}.

M = (
∏
a∈A

(|Va| + 1)) − 1.

n∑
k=1

|I| ×M
k.

Sup(P�) ≤ Sup(P).

 Cognitive Computation

1 3

Proof We only need to consider the condition where
P contains one fewer component than P′ . Formally, let
P = s1Δs2 … sk−1 and P� = s1Δs2 … sk . Therefore, we have

On the other hand, each match of P corresponds to at
most |Δ| matches of P′ , i.e.,

Therefore, we have

Problem 2 Confident temporal association rule discovery.
Input: P = {P|Sup(s ∈ P, S) ≥ �, Sup(P, S) ≥ �} and �.
Output: R = {r|c(r) ≥ �}.

The time complexity of Problem 2 is much less than that
of Problem 1. This is because the most time-consuming
process, namely, frequent Tri-SASP discovery, has been
solved in the later problem. Hence, the cost of generating
a rule is constant. In the worst situation, there are a total
of

∑n

k=1
M

k Tri-SASPs (k is the length of a Tri-SASP).
Therefore, we have up to

temporal association rules to be generated.
Additionally, the search space of confident rules can be

reduced by the following proposition: Given a Tri-SASP
P = s1Δs2 … sk and two indices 2 ≤ i < j ≤ k , we can obtain
P1 = s1Δs2 … si−1 , P2 = siΔsi+1 … sk , P�

1
= s1Δs2 … sj−1 ,

P�
2
= sjΔsj+1 … sk ; then, we have

Proposition 2 The confidence of r ∶ P1 → P2 is no larger
than that of r� ∶ P�

1
→ P�

2
 , namely

|I�| = |I| × |Δ|.

|I�
P
| ≤ |IP| × |Δ|.

Sup(P�) =
|I�

P
|

|I�| ≤
|IP|
|I| = Sup(P).

n∑
k=1

(Mk × (k − 1))

(15)c(r) ≤ c(r�).

Proof With Eq. (13), we know c(r) = Sup(P1⊗P2)

Sup(P1)
 and

c(r�) =
Sup(P�

1
⊗P�

2
)

Sup(P�
1
)

 . First, P1 ⊗ P2 = P�
1
⊗ P�

2
= P . Second,

because i < j , we have P1 ⊑ P′
1
 . Therefore, we have

c(r) ≤ c(r�).

Methods

In this section, we first present the framework of frequent
Tri-SASP discovery. With the SP and CP strategies (see Eq.
(6) and Eq. (7)), Σ = POS ∪ BND ∪ NEG can be initialized.
Second, we discuss the design of the proposed horizontal
and vertical methods. Third, we propose a technique for con-
fident temporal association rule discovery. Finally, a running
example for all the above algorithms is presented.

Frequent Tri‑SASP Discovery

Figure 4 shows the general process of frequent Tri-SASP
discovery. This framework consists of three major phases:
(1) obtaining the three-way state alphabet; (2) discovering
frequent Tri-SASPs; and (3) generating confident temporal
association rules. In the first phase, the set of frequent states
L
gen can be initially obtained by the frequent itemsets mining

techniques [29]. The threshold � is used here.
With the specified SP (see Eq. (6)) or CP (see Eq. (7))

strategies, the three-way state alphabet Σ = POS ∪ BND ∪
NEG can be obtained. For the SP strategy, we need to scan
L
gen only once to obtain regions POS and BND. There are

two reasons why it is unnecessary to compute and store
NEG: (1) computing NEG is too time consuming to be con-
sidered; and (2) even if we obtain NEG, the states in this
region still cannot be used to construct patterns. Hence, if we
chose the SP strategy, NEG indeed exists in Σ but is actually
empty for the algorithm.

For the CP strategy, the first step is to compute Lclo
and Lmax with Lgen and � . According to Eq. (7), the
positive region is just Lmax , which is the most spe-
cific. The boundary region is the difference set of

Fig. 4 The framework of frequent Tri-SASP discovery

Cognitive Computation

1 3

the closed state set and maximal state set, namely,
L
clo − L

max = {s|s ∈ L
clo, s ∉ L

max} . The negative region
is the difference set of the general state set and closed state
set, namely, Lgen − L

clo = {s|s ∈ L
gen, s ∉ L

clo}.
Algorithm 1 shows the process of frequent Tri-SASP dis-

covery. Line 2 shows that only states in NEG cannot be the
components of patterns. All frequent patterns are searched
in a width-first/levelwise manner. In other words, longer
frequent Tri-SASPs will be checked iff all of the shorter
frequent Tri-SASPs are obtained.

Because the process of support computing is the
most time consuming, a pre-pruning technique is pro-
posed on Lines 8-10. Here, P.tail is actually the maxi-
mal suffix of P; namely, if P = s1Δs2 … sk , P.tail will be
s2Δs3 … sk(k ≥ 2) . According to the a priori/down-closure
property (see Proposition 1), if P.tail is not frequent, P
must be infrequent. In terms of Line 11, we propose two
type of techniques to compute the support of the given
Tri-SASP. One of them, called horizontal support com-
puting (H-Sup), is presented in Algorithm 2. The other,
called vertical support computing (V-Sup), is presented
in Algorithm 3.

Algorithm 2 presents the process of the horizontal
support computing technique. For each given Tri-SASP
P = s1Δs2 … sk , its occurrence is counted by rescanning

the MTS S = (T ,A,V , f) . On Line 4, the number of posi-
tion sequences matching s1 and beginning with ti ∈ T is
obtained. The function “Count(.)” is proposed to recur-
sively determine the number. Once we locate si at tj , the
occurrence of si+1 can be determined directly. Namely, si+1
can occur only between tj+G+1 and t

j+G+1
.

For more details, parameters � ∈ [1, |T| − k × (G + 1)]
and � ∈ [2, k] indicate the index of the time point and that of
the state from P. Most importantly, Lines 16-20 implement
the matching rule of Tri-SASP. In short, if there is a state
from a POS region located between the occurrence positions
of s�−1 and s� , the current occurrence cannot be counted. In
other words, only states in POS cannot be ignored.

The greatest difference between vertical and horizontal
support computing approaches is the organization of the
MTS. In terms of classic association analysis, with items and
their transaction IDs (TIDs), the support of an itemset can be
obtained by computing the intersection of the TID sets of all
corresponding items. In this way, vertical-based algorithms
do not need to re-scan the original dataset. Therefore, we
can also maintain Tri-SASPs and their position sequences to
obtain frequent Tri-SASPs. First, we define a novel vertical
structure to store the information of the position sequences.

 Cognitive Computation

1 3

Definition 7 Given an MTS S and a Tri-SASP P = s1Δs2 … sk ,
the vertical structure of position sequences IP is a set of tuples

where C(ik) = |{I|I ends with ik}| , namely, the number of
position sequences ending with ik.

Because this vertical structure focuses on the information
of the termination of position sequences, TPList represents
the list of terminal positions.

Consequently, we are interested in the interaction of two
TPLists. Given two Tri-SASPs P = s1Δs2 … sk (k ≥ 1) and
P� = s�

1
 , their TPLists are P.TPList = {(C(ik), ik)|ik ∈ I ∈ IP}

and P′.TPList = {(1, i�
1
)|i�

1
∈ I� ∈ IP� } , respectively. Hence,

the TPList of P�� = P⊗ P� = s1Δs2 … skΔs
�
1
 is

Note that the second factor of ⊗ (P′) must contain a sin-
gle state. Moreover, when |P| = 1 , a Tri-SASP is actually
a state. In this way, the last position becomes the first in
order to guarantee the correctness of support computing.
Otherwise, if the length of P′ is no less than 2, we must
indicate the position of the first state, which would break the
structure of the TPList.

Second, Algorithm 3 is proposed according to Eqs. (16)
and (17). Lines 4-7 implement the Tri-SASP matching rule
with a vertical TPList. There is a state in POS, and one of
its terminal positions is between the last position of the first
Tri-SASP (P�) and that of the second (P��).

Finally, the space complexity of the vertical technique
(V-Sup) is required because the TPList brings additional
memory consumption. In the worst situation, the maximal
space of the TPList of a Tri-SASP is 2n. Therefore, the space
complexity of Algorithm 3 is only

(16)P.TPList = {(C(ik), ik)|ik ∈ I ∈ IP},

(17)P��.TPList = {(C(ik), i
�
1
)|i�

1
− ik ∈ [G + 1,G + 1]}.

Temporal Association Rule Discovery

Given a Tri-SASP of length k, we can obtain k − 1 confident
rules at most (k ≥ 2). Algorithm 4 shows the process of con-
fident temporal association rule discovery. When k = 2 , we
have rules such as s1 ⇒ s2 . However, there is also a kind of
Tri-SASP like s1Δs2 . They are similar but completely dif-
ferent in terms of both the semantics and metrics (see Eq.
(10) vs. Eq. (13)).

Running Example

With Tables 1 and 3, we present the process of frequent Tri-
SASP discovery. For brevity, we discuss only the process
of mining 1-P and 2-P for horizontal and vertical support
computing techniques. Initially, we let � = 0.02 , � = 0.2 and
Δ = [0, 6] . Because 𝛾 < 𝛼 , 1-P = POS ∪ BND.

Horizontal Computation

First, the set of candidate Tri-SASPs of length 2, namely,
2-C , is generated. On the basis of Table 3, there are
7 × 7 = 49 candidate Tri-SASPs, such as P = s2Δs8.

Second, the algorithm scans Table 1 from t1 to t10 to
search the time positions matching state s2 . t2 is the first
position matching s2 . Then, the algorithm scans t3 to t9 with
Δ = [0, 6] to determine all positions matching s8 . There is no
position matching s8.

Third, the algorithm determines that t3 matches s2 .
Then, the algorithm scans t4 to t10 to determine all posi-
tions matching s8 . Position t10 matches s8 ; however, there
is more than one state in POS occurring between t4 and t10 ,

O(

|T|∑
k=1

2|T|) = O(|T| × (|T| + 1)) = O(n2).

Cognitive Computation

1 3

such as s5 , s2 and s7 . Once the algorithm determines that a
state in POS happens in the current gap [t4, t10] , this itera-
tion will terminate.

Fourth, t8 is the third position matching s2 . When t9 does not
match s8 and s2 is found to occur in t9 , the iteration is terminated.

Fifth, t9 is the fourth position matching s2 . t10 is found to
match s8 , and there is no state in POS occurring in the gap
[t10, t16] . Because the length of MTS is 10, namely, |T| = 10 ,
the wildcard gap [t10, t16] is equivalent to [t10, t10].

Therefore, IP = {t9t10} , |IP| = 1 , and Sup(P) = 1

10×7
=

1

70

< 𝛾 = 0.02 . P is not a frequent Tri-SASP. The supports of
the other candidate Tri-SASPs can be obtained in the same
way.

Vertical Computation

Figure 5 shows an example of TP-List production for states
s2 and s8 . The only difference between the horizontal and
vertical techniques is the method of support computing.
First, the algorithm constructs a TP-List for each frequent
Tri-SASP of length 1, namely, all elements of 1-P . For
example, the TP-List of s2 is {(1, t2) , (1, t3) , (1, t8) , (1, t9)} .
The TP-List of s8 is {(1, t1), (1, t10)}.

Second, the TP-List of P = s2[0, 6]s8 is the cartesian
product of those of s2 and s8 . Treating t1 as a termination, the
wildcard gap is [t−6, t0] ; then, no start position of s2 occurs
in it. Treating t10 as a termination, the wildcard gap is [t3, t9] ;
then, start positions t3 , t8 and t9 occur in it.

Third, we remove these invalid position sequences.
We determine whether there is at least one state in POS
occurring between the starting and terminating posi-
tions. For example, state s5 happens at t4 , which occurs
between t3 and t10 . Hence, t3t10 is not a matching position
sequence.

Fourth, the TP-List of P is {(1, t10)} , which means
there is a matching position sequence ending with t10 .
Hence, the occurrence of P is 1, and the support is
1

70
< 𝛾 = 0.02 . P is not a frequent Tri-SASP. The TP-

Lists of the other candidate Tri-SASPs can be obtained
in the same way.

Tri‑SASP Growth

Because � is set to 0.02, all frequent Tri-SASPs of length 2
are obtained by either the horizontal or vertical algorithm.
The results of 2-P are listed as follows:

(a3, L)[0,6](a2, L)(0.0286), (a3 , L)[0,6](a3 , L)(0.0286),
(a1 , H)[0,6](a1 , L)(0.0286), (a1 , L)[0,6](a3 , L)(0.0429) and
(a2 , H)[0,6](a3, L)(0.0286).

To determine all frequent Tri-SASPs of length 3, the set
of candidate Tri-SASPs, namely, 3-C = 2-P⊗1-P = {(a3,
L)[0,6](a2, L)[0, 6](a2, L), ..., (a2, H)[0,6](a3, L)[0, 6](a2,
H)}, is determined. The cardinality of |3-C| is 5 × 7 = 35 .
Through horizontal or vertical support computation, we have
3-P = � . Therefore, the final output is 1-P ∪ 2-P.

Fig. 5 An example of TPList production

(a) SP (α = 0 .1, β = 0 .15, γ = 0 .0088, λ = 0 .058) (b) CP (α = 0 .1, γ = 0 .0055, λ = 0 .037)

Fig. 6 Visualization of Tri-SASPs and rules on Dataset I

 Cognitive Computation

1 3

Experiments

In this section, we focus on the problem of temporal associa-
tion analysis, where the scalability of the algorithm and the
readability of the patterns is the most important. Therefore,
the following questions are answered by experiments:

(1) What interesting Tri-SASPs can we obtain from the
real-world datasets?

(2) What is the difference between the discovered Tri-
SASPs w.r.t. the SP and CP strategies?

(3) How good is the performance of the horizontal and
vertical algorithms?

Datasets

Table 6 shows the information of the temporal MTS data-
sets. The original AirQuality dataset was downloaded
from UCI1. CentralAirConditioning is a semi-open-access
dataset for the Chinese National Contest of Maths Mod-
els2. The last two oilwell maintenance datasets are pro-
vided by the China National Offshore Oil Corporation
(CNOOC)3.

Interpretability

Question (1) is answered here.
Figures 6 and 7 enhance human cognition about state asso-

ciations by illustrating a number of nodes and directed edges.
For brevity of visualization, we first adjust the thresholds �
and � to keep the number of frequent Tri-SASPs with length 2
in the range of 5 to 15. Although interesting Tri-SASPs with
length no less than 3 cannot be observed directly, the graph
still provides some clues. Second, the tri-wildcard gap Δ
between any two states is set to [0, 6]. Third, there are two
kinds of states. The ones in the POS region are marked with + ,
while another one belonging to BND has no tag. Fourth, two
kinds of edges are introduced: (1) s1

Sup(P)
⟶ s2 denotes that s1Δs2 is

frequent but r ∶ s1 ⇒ s2 is not confident; and (2) s1
(Sup(P),c(r))

⟹ s2

denotes that s1Δs2 is frequent and r ∶ s1 ⇒ s2 is confident.
Finally, we present only two state transition charts from data-
sets I and IV, namely, AirQuality and ESP-Working-Diagnose.

Figure 6 shows the visualization of the Tri-SASPs and their
temporal association rules on Dataset I. There are 6 states/
nodes and 5 nodes in Fig. 6a, b, respectively. In Fig. 6a, the
associations among nodes 1 , 2 , 3 and 4 are stronger than
that between nodes 5 and 6 . Rules such as 3

(0.0102,0.06)

⟹ 2
have two interpretations: (1) the probability of pattern
3 [0, 6] 2 occurring is 0.0102; and (2) if state 2 occurs,

the probability of state 2 occurring is 0.06. Patterns such as
1

0.008
⟶ 3 can be interpreted as indicating that the probability

of pattern 1 [0, 6] 3 occurring is 0.008. In Fig. 6b, node 3
seems independent of the other nodes because there is no
pattern or rule among them. However, the hidden temporal
associations around node 3 can be observed through decreas-
ing � or �.

Table 6 Basic information of the datasets

Dataset Name |T| |A| Area

I AirQuality 9,358 15 Environments
II CentralAirConditioning 88,840 51 Equipment
III ESP-Sanding-Diagnose 3,893 22 Petroleum
IV ESP-Working-Diagnose 33,001 14 Petroleum

(a) SP (α = 0 .05, β = 0 .091, γ = 0 .012, λ = 0 .14) (b) CP (α = 0 .05, γ = 0 .02, λ = 0 .25)

Fig. 7 Visualization of Tri-SASPs and rules on Dataset IV

1 http:// archi ve. ics. uci. edu/ ml/ datas ets/ Air+ Quali ty
2 http:// www. tipdm. org/ bdrace/ index. html
3 http:// www. cnooc. com. cn/ en/

http://archive.ics.uci.edu/ml/datasets/Air+Quality
http://www.tipdm.org/bdrace/index.html
http://www.cnooc.com.cn/en/

Cognitive Computation

1 3

Figure 7 shows the visualization of Tri-SASPs and their
temporal association rules on Dataset IV. There are 9 states/
nodes in Fig. 7a and 11 nodes in Fig. 7b. State 6 is the center
of both Fig. 7a, b. However, state 6 belongs to POS in the
SP strategy, while it belongs to BND in the CP strategy. In
terms of the SP strategy, POS = { 1 , 2 , 3 , 4 , 8 , 9 } and
BND = { 7 , 10 }. In terms of the CP strategy, POS = { 7 ,
8 , 9 , 10 , 11 } and BND = { 1 , 2 , 3 , 4 , 5 , 6 }. The

transition probabilities between the same two pairs of states
are different. In Fig. 7b, Sup(6 [0, 6] 4) = 0.023 , while
Sup(4 [0, 6] 6) = 0.025 . Interestingly, the supports of the
symmetrical Tri-SASPs in Fig. 7a are the same. For example,
Sup(6 [0, 6] 3) = Sup(3 [0, 6] 6) = 0.014, Sup(6 [0, 6] 1)
= Sup(1 [0, 6] 6) = 0.012, and Sup(6 [0, 6] 8) = Sup(8 [0,
6] 6) = 0.018. This is because state nodes 1 , 2 , 3 , 4 , 7 ,
8 , 9 , 10 and 6 appear alternately in Dataset IV. It is not

useful for experts to further distinguish the causalities between
events. Fortunately, the temporal rules obtained here are very
informative.

Diversity

Question (2) is answered here.
Tables 7 and 8 show the diversity between the SP and

CP strategies on Datasets I and IV, respectively. Diversity is
defined as

In Table 7, it can be observed that (1) the SP strategy
finds more Tri-SASPs than the CP one; and (2) the diversity
increases with lower � and � . In Table 7 (a), when � = 0.015 ,
the diversity between the SP and CP is the maximal value,
194 + 39 = 233 . When � = 0.055 , the diversity between the
SP and CP is the minimal value, 94 + 9 = 103 . In Table 7
(b), when � = 0.0017 , the diversity between the SP and CP
is the maximal value, 130. When � = 0.0025 , the diversity
between the SP and CP is the minimal value, 100.

Table 8 shows the number of different Tri-SASPs between
the SP and CP strategies on Dataset IV. With Table 8, it can
be observed that (1) the CP strategy finds more Tri-SASPs
than the SP strategy; and (2) the diversity between the SP
and CP decreases with larger � and � . In Table 8 (a), when
� = 0.007 , the diversity between the SP and CP is the maxi-
mal value, 1,458. When � = 0.009 , the diversity between the
SP and CP is the minimal value, 114. In Table 8 (b), when
� = 0.006 , the diversity between the SP and CP is the maxi-
mal value, 664. When � = 0.0034 , the diversity between the
SP and CP is the minimal value, 51.

In short, the SP and CP strategies cannot replace each
other in general. Given an arbitrary MTS, both of them are
worth trying. Various tri-partition state alphabets specified
by users can bring many different Tri-SASPs.

|PSP − P
CP| + |PCP − P

SP|.

Table 7 The number of different
Tri-SASPs between the SP and
CP strategies on Dataset I

(a) � = 0.08, � = 0.0018

� 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055
|PSP − P

CP| 194 184 186 182 171 159 143 114 94

|PCP − P
SP| 39 8 4 1 3 3 4 14 9

(b) � = 0.05, � = 0.08

� 0.0017 0.0018 0.0019 0.002 0.0021 0.0022 0.0023 0.0024 0.0025
|PSP − P

CP| 123 114 81 92 82 76 69 66 66

|PCP − P
SP| 7 14 4 4 1 2 5 4 4

Table 8 The number of different
Tri-SASPs between the SP and
CP strategies on Dataset IV

(a) � = 0.006, � = 0.0055

� 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
|PSP − P

CP| 21 21 21 21 21 20 19 16 16

|PCP − P
SP| 1,137 677 731 761 1,043 1,438 374 98 99

(b) � = 0.005, � = 0.01

� 0.006 0.01 0.014 0.018 0.022 0.026 0.03 0.034 0.038
|PSP − P

CP| 21 6 5 5 5 5 4 2 3

|PCP − P
SP| 643 340 217 135 112 96 68 49 65

 Cognitive Computation

1 3

Scalability

Question (3) is answered here.
Two sets of experiments are undertaken to investigate

the runtime with respect to thresholds � and � . Figure 8
shows the results of the first set of experiments. The
left Y axis corresponds to the two SP-strategy-based
techniques, and the right one corresponds to the two
CP-strategy-based techniques. Figure 8b shows only
two folding lines for the horizontal techniques. This is
because the runtimes of the two vertical ones are greater
than 24 hours. Moreover, the performance of the verti-
cal ones becomes very poor when the TPLists of the

Tri-SASPs are very large. Otherwise, the vertical tech-
niques will be very efficient; see Fig. 8a, c.

Figure 9 shows the results of the second set of experiments.
Namely, the runtimes of the threshold and compressed parti-
tion strategies based on the horizontal and vertical techniques
with respect to � are shown. The left Y axis corresponds to
the two SP-strategy-based techniques, and the right one cor-
responds to the two CP strategy-based techniques. Similarly,
the runtime of each technique becomes very long with smaller
� . In Fig. 9b, the two vertical techniques are also too slow to
obtain patterns. In Fig. 9c, d, the two CP-strategy-based tech-
niques are much faster than the two SP-strategy-based ones.
This is because the CP strategy generates much smaller POS

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028
2000

4000

6000

8000

10000

12000

14000

16000

α

R
un

 ti
m

e(
m

s)

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028

33.23.43.6

x 105

0.01 0.012 0.014 0.016 0.018 0.02 0.022 0.024 0.026 0.028
1.5

2

2.5

3

3.5

4

4.5

5
x 105

Horizontal−SP
Vertical−SP
Horizontal−CP
Vertical−CP

(a) Dataset I (β = 0 .04, γ = 0 .03)

0.3 0.4 0.5 0.6 0.7 0.8

1.4
1.5
1.6
1.7
1.8
1.9

x 105

α

R
un

 ti
m

e(
m

s)

0.3 0.4 0.5 0.6 0.7 0.8

1.2
1.4
1.6
1.8
2
2.2

x 104

Horizontal−SP
Horizontal−CP

(b) Dataset II (β = 0 .8, γ = 0 .85)

1 1.5 2 2.5 3
x 10−3

3

4

5

6

7

8

9

10

11

12
x 104

α

R
un

 ti
m

e(
m

s)

1 1.5 2 2.5 3
x 10−3

11.021.041.061.081.1

x 105

1 1.5 2 2.5 3
x 10−3

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3
x 105

Horizontal−SP
Vertical−SP
Horizontal−CP
Vertical−CP

(c) Dataset III (β = 0 .005, γ = 0 .0055)

2 2.5 3 3.5 4
x 10−3

0

2

4
x 106

α

R
un

 ti
m

e(
m

s)

2 2.5 3 3.5 4
x 10−3

0.55
0.6
0.65

x 105

2 2.5 3 3.5 4
x 10−3

1

1.5

2
x 105

Horizontal−SP
Vertical−SP
Horizontal−CP
Vertical−CP

(d) Dataset IV (β = 0 .0045, γ = 0 .01)

Fig. 8 The runtime of the techniques w.r.t. � . The SP (solid line) corresponds to the Y axis on the left, and the CP (dotted line) corresponds to
the Y axis on the right

Cognitive Computation

1 3

and BND regions than the SP one. The value of � does not
effect the runtime of the SP-strategy-based techniques because
POS ∪ BND remains unchanged when � is specified.

Conclusion

Given an MTS, we define frequent Tri-SASPs and confident
temporal association rules to help human experts make better
decisions. The SP strategy gives more frequent states greater
importance, while the CP strategy gives more special (longer)
states greater importance. For an MTS under an approximately
uniform distribution, the horizontal algorithm is faster than the

vertical one; otherwise, the vertical algorithm is faster Moreo-
ver, numerous insignificant states containing “Normal (N)” are
ignored to focus on more interesting Tri-SASPs.

The following research topics deserve further investigation:

• Obtaining frequent Tri-SASPs in a depth-first, parallel,
incremental, distributed or hybrid way.

• Using a one-off or non-overlapping condition instead of
a general one.

• Considering fuzzy, uncertain, weighted and utility
variants of Tri-SASPs.

• Extending Tri-SASPs to sequence databases, which are
more complex and more widespread in reality.

(a)

(c) (d)

Fig. 9 The runtime of the techniques w.r.t. � . The SP (solid line) corresponds to the Y axis on the left, and the CP (dotted line) corresponds to
the Y axis on the right

 Cognitive Computation

1 3

Funding This study was funded by the National Natural Science Foun-
dation of China (grant numbers 41604114, 62006200); the Sichuan
Science and Technology Program (grant numbers 2019YFG0216,
2020YFG0307); the Scientific Research and Innovation Team of
Sichuan Tourism University (grant number 18SCTUTD06); and the
Scientific Research Project of Sichuan Tourism University (grant num-
ber 2020SCTU14).

Declarations

Ethical Approval This article does not contain any studies with animals
performed by any of the authors.

Conflict of Interest The authors declare that there are no conflicts of
interest regarding the publication of this paper.

References

 1. Yang B, Li JH. Complex network analysis of three-way decision
researches. Int J Mach Learn Cybern. 2020:973–87.

 2. Yao YY. Three-way decision: An interpretation of rules in rough
set theory. In: International Conference on Rough Sets and Knowl-
edge Technology. 2009:642–49.

 3. Pawlak Z. Rough sets. Int J Comput Inform Sci. 1982;11(5):341–56.
 4. Campagner A, Cabitza F, Ciucci D. Three-way decision for handling

uncertainty in machine learning: a narrative review. In: International
Joint Conference on Rough Sets. Springer. 2020:137–52.

 5. Yao YY. Three-way decisions and cognitive computing. Cogn
Comput. 2016;8(4):543–54.

 6. Yao YY. The geometry of three-way decision. Appl Intell. 2021.
https:// doi. org/ 10. 1007/ s10489- 020- 02142-z.

 7. Li JH, Huang CC, Qi JJ, Qian YH, Liu WQ. Three-way cognitive
concept learning via multi-granularity. Inf Sci. 2017;378:244–63.

 8. Mao H, Zhao SF, Yang LZ. Relationships between three-way concepts
and classical concepts. J Intell Fuzzy Syst. 2018;35(1):1063–75.

 9. Deng XF, Yao YY. Decision-theoretic three-way approximations
of fuzzy sets. Inf Sci. 2014;279:702–15.

 10. Yao YY. Interval sets and three-way concept analysis in incom-
plete contexts. Int J Mach Learn Cybern. 2017;8(1):3–20.

 11. Fang Y, Min F. Cost-sensitive approximate attribute reduction
with three-way decisions. Int J Approx Reason. 2019;104:148–65.

 12. Min F, Liu FL, Wen LY, Zhang ZH. Tri-partition cost-sensitive
active learning through knn. Soft Comput. 2019;23(5):1557–72.

 13. Ye X, Liu D. An interpretable sequential three-way recommenda-
tion based on collaborative topic regression. Expert Syst Appl.
2021;168:114454. https:// doi. org/ 10. 1016/j. eswa. 2020. 114454.

 14. Zhang HR, Min F, Shi B. Regression-based three-way recom-
mendation. Inf Sci. 2017;378:444–61.

 15. Min F, Zhang SM, Ciucci D, Wang M. Three-way active learn-
ing through clustering selection. Int J Mach Learn Cybern.
2020;11(5):1033–46.

 16. Yue XD, Chen YF, Miao DQ, Qian J. Tri-partition neighborhood
covering reduction for robust classification. Int J Approx Reason.
2016;83:371–84.

 17. Yu H, Wang XC, Wang GY, Zeng XH. An active three-way clus-
tering method via low-rank matrices for multi-view data. Inf Sci.
2020;507:823–39.

 18. Min F, Zhang ZH, Zhai WJ, Shen RP. Frequent pattern discovery
with tri-partition alphabets. Inf Sci. 2020;507(1):715–32.

 19. Li HX, Zhang LB, Huang B, Zhou XZ. Sequential three-way deci-
sion and granulation for cost-sensitive face recognition. Knowl-
Based Syst. 2016;91(C):241–51.

 20. Ren RS, Wei L. The attribute reductions of three-way concept
lattices. Knowl-Based Syst. 2016;99:92–102.

 21. Zhou B, Yao YY, Luo JG. Cost-sensitive three-way email spam
filtering. J Intell Inf Syst. 2014;42(1):19–45.

 22. Saira Q, Hasan M, Hammad M, Omer BM. Relationship identi-
fication between conversational agents using emotion analysis.
Cogn Comput. 2021:1–15.

 23. Wang GY, Yu H. Multi-granularity cognitive computing-a new
model for big data intelligent computing. Frontiers of Data and
Domputing. 2020;1(2):75–85.

 24. Agrawal R, Srikant R. Mining sequential patterns. Proceedings of
the International Conference on Data Engineering. 1995;95:3–14.

 25. Gan WS, Lin JCW, Fournier-Viger P, Chao HC, Yu PS. A survey
of parallel sequential pattern mining. ACM Trans Knowl Discov
Data. 2019;13(3):1–34.

 26. Sakai H, Nakata M. Rough set-based rule generation and apri-
ori-based rule generation from table data sets: a survey and a
combination. CAAI Transactions on Intelligence Technology.
2019;4(4):203–13.

 27. Fournier-Viger P, Lin JCW, Kiran RU, Koh YS, Thomas R. A
survey of sequential pattern mining. Data Science and Pattern
Recognition. 2017;1(1):54–77.

 28. Srikant R, Agrawal R. Mining sequential patterns: Generalizations
and performance improvements. In: International Conference on
Extending Database Technology. Springer. 1996:1–17.

 29. Agrawal R, Srikant R. Fast algorithms for mining association
rules. In: Proceedings of the 20th Very Large Data Bases Confer-
ence. 1994:487–99.

 30. Zaki MJ. Spade: An efficient algorithm for mining frequent
sequences. Mach Learn. 2001;42(1):31–60.

 31. Ayres J, Flannick J, Gehrke J, Yiu T. Sequential pattern mining
using a bitmap representation. In: Proceedings of the eighth ACM
SIGKDD International Conference on Knowledge Discovery and
Data Mining. 2002:429–35.

 32. Yang ZL, Kitsuregawa M. Lapin-spam: An improved algorithm
for mining sequential pattern. In: 21st International Conference
on Data Engineering Workshops. 2005:1222–25.

 33. Pei J, Han JW, Mortazavi-Asl B, Wang JY, Pinto H, Chen
QM, Dayal U, Hsu MC. Mining sequential patterns by pattern-
growth: the prefixspan approach. IEEE Trans Knowl Data Eng.
2004;16(11):1424–40.

 34. Zaki MJ. Scalable algorithms for association mining. IEEE Trans
Knowl Data Eng. 2000;12(3):372–90.

 35. Wang JY, Han JW, Li C. Frequent closed sequence mining
without candidate maintenance. IEEE Trans Knowl Data Eng.
2007;19(8):1042–56.

 36. Luo CN, Chung SM. Efficient mining of maximal sequential pat-
terns using multiple samples. In: SIAM International Conference
on Data Mining. 2005:415–26.

 37. Lo D, Khoo SC, Li JY. Mining and ranking generators of sequen-
tial patterns. In: SIAM International Conference on Data Mining.
2008:553–64.

 38. Chang JH. Mining weighted sequential patterns in a sequence
database with a time-interval weight. Knowl-Based Syst.
2011;24(1):1–9.

 39. Lan GC, Hong TP, Tseng VS, Wang SL. Applying the maximum
utility measure in high utility sequential pattern mining. Expert
Syst Appl. 2014;41(11):5071–81.

 40. Muzammal M, Raman R. Mining sequential patterns from proba-
bilistic databases. Knowl Inf Syst. 2015;44(2):325–58.

 41. Fiot C, Laurent A, Teisseire M. From crispness to fuzziness: Three
algorithms for soft sequential pattern mining. IEEE Trans Fuzzy
Syst. 2007;15(6):1263–77.

 42. Zhuang DEH, Li GCL, Wong AK. Discovery of temporal asso-
ciations in multivariate time series. IEEE Trans Knowl Data Eng.
2014;26(12):2969–82.

https://doi.org/10.1007/s10489-020-02142-z
https://doi.org/10.1016/j.eswa.2020.114454

Cognitive Computation

1 3

 43. Tatavarty G, Bhatnagar R, Young B. Discovery of temporal
dependencies between frequent patterns in multivariate time
series. In: Computational Intelligence and Data Mining. IEEE
Symposium on. 2007:688–96.

 44. Zhang ZH, Min F. Frequent state transition patterns of multivari-
ate time series. IEEE Access. 2019;7:142934–46.

 45. Segura-Delgado A, Gacto MJ, Alcalá R, Alcalá-Fdez J. Tempo-
ral association rule mining: An overview considering the time
variable as an integral or implied component. Wiley Interdis-
ciplinary Reviews: Data Mining and Knowledge Discovery.
2020;10(4):e1367.

 46. Wu YX, Tong Y, Zhu XQ, Wu XD. Nosep: Nonoverlapping
sequence pattern mining with gap constraints. IEEE Transactions
on Cybernetics. 2017;48(10):2809–22.

 47. Wu XD, Zhu XQ, He Y, Arslan AN. Pmbc: Pattern mining from
biological sequences with wildcard constraints. Comput Biol
Med. 2013;43(5):481–92.

 48. Min F, Wu YX, Wu XD. The apriori property of sequence pattern
mining with wildcard gaps. International Journal of Functional
Informatics and Personalised Medicine. 2012;4(1):15–31.

 49. Yao YY, Wong SK. A decision theoretic framework for approxi-
mating concepts. Int J Man Mach Stud. 1992;37(6):793–809.

 50. Ziarko W. Variable precision rough set model. J Comput Syst Sci.
1993;46(1):39–59.

 51. Sang BB, Guo YT, Shi DR, Xu WH. Decision-theoretic rough
set model of multi-source decision systems. Int J Mach Learn
Cybern. 2017:1–14.

 52. Hu BQ. Three-way decisions space and three-way decisions. Inf
Sci. 2014;281(281):21–52.

 53. Li XN, Yi HJ, She YH, Sun BZ. Generalized three-way
decision models based on subset evaluation. Int J Approx
Reason. 2017;83(C):142–59.

 54. Liu D, Liang DC, Wang CC. A novel three-way decision model based
on incomplete information system. Knowl-Based Syst. 2016;91:32–45.

 55. Xu WH, Li MM, Wang XZ. Information fusion based on informa-
tion entropy in fuzzy multi-source incomplete information system.
Int J Fuzzy Syst. 2017;19(4):1200–16.

 56. Wang M, Min F, Zhang ZH, Wu YX. Active learning through den-
sity clustering. Expert Syst Appl. 2017;85:305–17.

 57. Sun L, Zhang XY, Qian YH, Xu JC, Zhang SG, Tian Y. Joint
neighborhood entropy-based gene selection method with fisher
score for tumor classification. Appl Intell. 2019;49(4):1245–59.

 58. Wang CZ, Huang Y, Shao MW, Hu QH, Chen DG. Feature selec-
tion based on neighborhood self-information. IEEE Transactions
on Cybernetics. 2019;50(9):4031–42.

 59. Tan CD, Min F, Wang M, Zhang HR, Zhang ZH. Discovering
patterns with weak-wildcard gaps. IEEE Access. 2016;4:4922–32.

	Tri-Partition State Alphabet-Based Sequential Pattern for Multivariate Time Series
	Abstract
	Introduction
	Related Work
	Three-Way Decisions
	Sequence Pattern Discovery

	Tri-SASP and Temporal Association Analysis
	Data Model
	Strategies for the Tri-Partition State Alphabet
	Pattern and Rule
	Problem Statement

	Methods
	Frequent Tri-SASP Discovery
	Temporal Association Rule Discovery
	Running Example
	Horizontal Computation
	Vertical Computation
	Tri-SASP Growth

	Experiments
	Datasets
	Interpretability
	Diversity
	Scalability

	Conclusion
	References

